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1. What we are interested in: A Problem of Erdős 2 slides

The Ramsey Multiplicity Problem

Theorem (Ramsey 1930)

For any t ∈ N there exists Rt,t ∈ N such that any 2-edge-coloring of the complete
graph of order at least Rt,t contains a monochromatic clique of size t.

A well-known question

Can we determine Rt1,...,tc ?

A related question

How many cliques are required?

Theorem (Goodman 1959 – Asymptotic Version)

Asymptotically at least 1/4 of all triangles are monochromatic in any 2-edge-coloring.
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The Ramsey Multiplicity Problem

Theorem (Ramsey 1930 – Multicolor Version)

For any t1, . . . , tc ∈ N there exists Rt1,...,tc ∈ N s.t. any c-edge-coloring of Kn with
n ≥ Rt1,...,tc ∈ N contains an clique of size ti with edges colored i for some 1 ≤ i ≤ c.

A well-known question

Can we determine Rt1,...,tc ?

A related question

How many cliques are required?

Theorem (Goodman 1959 – Asymptotic Version)

Asymptotically at least 1/4 of all triangles are monochromatic in any 2-edge-coloring.
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Beyond Goodman’s Result
Notation. Let Gn = {G : E (Kn) → [c]} denote all c-edge-colorings of Kn, Gi the
subgraph of Kn given by color i and kti (Gi) the fraction of ti -cliques in Gi .

Problem (Ramsey Multiplicity)

What is the value of mt1,...,tc = limn minG∈Gn kt1(G1) + . . . + ktc (Gc)?

The success of the binomial random graph for m3,3 lead to the following conjecture.

Conjecture (Erdős 1962)

mt,t = 21−(t
2) for any t ≥ 2. False for t ≥ 4 (Thomason 1989)

The exact value of even m4,4 remains unknown with little progress over the
last 30 years! We obtain the best current upper and lower bounds.
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2. Obtaining upper bounds: Graph Blowups and Search Heuristics 2 slides

3. Obtaining lower bounds: Flag Algebras and SDPs 4 slides
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How to blow up colorings
Notation. Let G◦

n denote all c-colorings of the looped Kn and k◦
ti (Gi) the fraction of

not nec. injective maps from Kti to Gi that are strong graph homomorphisms.

Proposition (Bounds from any coloring)

We have mt1,...,tc ≤ k◦
t1(G1) + . . . + k◦

tc (Gc) for any G ∈ G◦ =
⋃

n G◦
n .

Proof. The m-fold blow-up G×m ∈ Gnm of G is obtained by replacing each vertex v in
G with m copies v1, . . . , vm and coloring the edge viwj with the color of vw in G. By
definition mt1,...,tc ≤ limm→∞ kt1(G×m

1 ) + . . . + ktc (G×m
c ) = k◦

t1(G1) + . . . + k◦
tc (Gc).

Corollary (Relating Ramsey numbers and Ramsey multiplicity)

By blowing up Ramsey graphs, we get mt1,...,tc ≤ (Rt1,...,tc−1 − 1)1−tc .
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How to blow up colorings
Notation. Let G◦

n denote all c-colorings of the looped Kn and k◦
ti (Gi) the fraction of

not nec. injective maps from Kti to Gi that are strong graph homomorphisms.

Proposition (Bounds from any coloring)

We have mt1,...,tc ≤ k◦
t1(G1) + . . . + k◦

tc (Gc) for any G ∈ G◦ =
⋃

n G◦
n .

Proof. The m-fold blow-up G×m ∈ Gnm of G is obtained by replacing each vertex v in
G with m copies v1, . . . , vm and coloring the edge viwj with the color of vw in G. By
definition mt1,...,tc ≤ limm→∞ kt1(G×m

1 ) + . . . + ktc (G×m
c ) = k◦

t1(G1) + . . . + k◦
tc (Gc).

Question: How can we find better candidates for G?
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Which colorings to blow up

Theorem (Thomason 1989)

m4,4 ≤ 0.3050 and m5,5 ≤ 0.001770.
Explicit by-hand construction
with local search improvements.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

m4,4 ≤ 0.03012 and m5,5 ≤ 0.001707.
Search heuristics over Cayley
graphs with specific groups.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

m3,4 = 689 · 3−8 with stability results.
Search heuristics over graphs of
order 27 found Schläfli graph.

Stability proves that the search heuristic found a unique global optimum.



2. Obtaining upper bounds: Graph Blowups and Search Heuristics 2 slides

Which colorings to blow up

Theorem (Franek and Rödl 1993)

m4,4 ≤ 0.03052.
Exhaustive search over
specific powerset constructions.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

m4,4 ≤ 0.03012 and m5,5 ≤ 0.001707.
Search heuristics over Cayley
graphs with specific groups.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

m3,4 = 689 · 3−8 with stability results.
Search heuristics over graphs of
order 27 found Schläfli graph.

Stability proves that the search heuristic found a unique global optimum.
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Which colorings to blow up

Theorem (Thomason 1997)

m4,4 ≤ 0.03031 and m5,5 ≤ 0.001720.
Exhaustive search over
XOR graph products.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

m4,4 ≤ 0.03012 and m5,5 ≤ 0.001707.
Search heuristics over Cayley
graphs with specific groups.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

m3,4 = 689 · 3−8 with stability results.
Search heuristics over graphs of
order 27 found Schläfli graph.

Stability proves that the search heuristic found a unique global optimum.
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Which colorings to blow up

Theorem (Even-Zohar and Linial ’15)

m4,4 ≤ 0.03028.
Iterating the construction
of Thomason (1997).

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)
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Search heuristics over Cayley
graphs with specific groups.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

m3,4 = 689 · 3−8 with stability results.
Search heuristics over graphs of
order 27 found Schläfli graph.
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Which colorings to blow up

Theorem (Even-Zohar and Linial ’15)

m4,4 ≤ 0.03028.
Iterating the construction
of Thomason (1997).

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

m4,4 ≤ 0.03012 and m5,5 ≤ 0.001707.
Search heuristics over Cayley
graphs with specific groups.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

m3,4 = 689 · 3−8 with stability results.
Search heuristics over graphs of
order 27 found Schläfli graph.

Open Problem: Do we always have mt1,...,tc = minG∈G◦ k◦
t1(G1) + . . . + k◦

tc (Gc)?
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Flag Algebras and their Semantic Cones
Razborov (2007) introduced Flag Algebras to study the limits of discrete objects.

Definition (Flag Algebras for the empty type)

The flag algebra (of the empty type) A is given by considering RG, factoring out the
relations K given by the chain rule and defining an appropriate product.

We can phrase our problem through conic optimization as

max
{

λ ∈ R : + − λ∅ ∈ S = {f ∈ A : φ(f ) ≥ 0 for all φ ∈ Hom+(A,R)}
}

where S is the semantic cone and Hom+(A,R) = {φ ∈ Hom(A,R) : φ |G≡ 0}.

Optimizing over the semantic cone is hard.
However, we can approximate it through SOS hierarchy.
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Leveraging Symmetries
The result of Goodman can be derived from the following SDP:

max
Q⪰0

min
{

1 −
〈
Q,
( 1 0

0 0

)〉
, −
〈
Q,
( 1/3 1/3

1/3 0

)〉
, −
〈
Q,
( 0 1/3

1/3 1/3

)〉
, 1 −

〈
Q,
( 0 0

0 1

)〉}
= 1/4.

This was obtained through computations on graphs of order N = 3. Increasing N
generally both improves the bound and makes the SDP harder to solve:

N value time memory
6 0.02875 0.2s ±0.0 81.2MB ±24.7

7 0.02918 4.9s ±0.1 126.9MB ±26.3

8 0.02942 1.8h ±0.1 1.8GB ±0.0

Table: Complexity of SDP problem formulations for m4,4 using CSDP

How can we use combinatorial information to reduce these SDP formulations?
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Bounds through Semidefinite Programming
Method 1 Reduce the number of constraints and blocks by combining constraints.

max
Q⪰0

min
{

1 −
〈
Q,
( 1/2 0

0 1/2

)〉
, −
〈
Q,
( 1/6 1/3

1/3 1/6

)〉}
,

Uses that the Ramsey multiplicity is invariant under color permutation. Purely
combinatorial proof. Strictly stronger than considering partitions (Balogh et al. 2017).
Method 2 Reduce the number of variables by block diagonalization.

max
x ,y≥0

min
{
1 − x

2 − y
2 , − x

2 + y
6
}

.

Particularly strong when combined with Method 1. Essentially an application of
Schur’s Lemma. Symmetries are easily determined combinatorially.
Generalizes the antiinvariant split of Razborov (2010). Similar to diagonalization in
SOS literature (Gatermann and Parrilo 2004). See also Bachoc et al. (2012).
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Leveraging Symmetries

Theorem (Kiem, Pokutta, S. 2022+)

m4,4 ≥ 0.02961 and m5,5 ≥ 0.001557 from N = 9.

Theorem (Cummings et al. 2013)

m3,3,3 = 1/25 = 1/(R3,3 − 1)2 and the only extremal constructions are based on R3,3.

Theorem (Kiem, Pokutta, S. 2022+)

m3,3,3,3 = 1/256 = 1/(R3,3,3 − 1)2 from N = 6.

Open Problem: m3,...,3 = (R3,...,3 − 1)−2 for all c?
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Leveraging Symmetries

Theorem (Kiem, Pokutta, S. 2022+)

m4,4 ≥ 0.02961 and m5,5 ≥ 0.001557 from N = 9.

Theorem (Cummings et al. 2013)

m3,3,3 = 1/25 = 1/(R3,3 − 1)2 and the only extremal constructions are based on R3,3.

Theorem (Kiem, Pokutta, S. 2022+)

m3,3,3,3 ≥ 1/256 − ε for some small ε from N = 6.

Open Problem: m3,...,3 = (R3,...,3 − 1)−2 for all c?



Thank you for your attention!
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4. Appendix

Proof of Goodman’s Result
An upper bound follows by considering the sequence of, e.g., (1) evenly-split
complete bipartite graphs Kn/2,n/2 or (2) binomial random graphs G(n, 1/2).
We saw: How to generalized the bipartite construction computationally.

A matching lower bound can symbolically be derived through

+ = 3
2

((1
3 +

)
+
(1

3 +
)

− 1
3

)

= 3
2

((
+

)
+
(

+
)

− 1
3

)
→ 3

2

(
2

+
2

− 1
3

)

≥ 3
2

(
2

+
(
1 −

)2
− 1

3

)
= 3

(
+ 1

2

)2

+ 1
4 ≥ 1

4 .

We saw: How to formalize and simplify this through Flag Algebras.
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