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An unsure talk on an un-Schur problem

1. Why this problem? 2 slides

2. Constructive lower bounds 2 slides

3. An upper bound 4 slides

4. Concluding Remarks 2 slide



1. Why this problem? 2 slides

Monochromatic Schur triples and Ramsey properties
Theorem (Schur 1916)

Every c-coloring of [n] contains a monochromatic Schur triple for n ≥ n0(c).

Graham, Rödl, and Ruciński (1996) showed that asymptotically at least an 0.04
proportion needs to be monochromatics for c = 2 using a result of Goodman (1959).

Question (Chen and Graham at SOCA 96, $100).
Is the proportion 2/11 = 0.18 given by a construction of Zeilberger optimal?

0 4/11 n 10/11 n

Theorem (Datskovsky, 2003; Schoen, 1999; Robertson and Zeilberger, 1998)

Yes, and the construction is unique!
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1. Why this problem? 2 slides

Rainbow Schur triples and anti-Ramsey properties

Theorem (Alekseev and Savchev, 1987; Schönheim, 1990)

Every 3-coloring of [n] needs to contain an un-Schur triple, i.e., a rainbow Schur triple,
for large enough n as long as each color class covers at least a 1/4 proportion of [n].

Question. What is the maximum proportion of Schur triples that can be rainbow?

This (surprisingly) seems to not have been explicitly asked before, even though the
graph theory equivalent due to Erdős and Sós was resolved by Balogh et al. (2017).

Theorem (Parczyk and S., 2024+)

At least 0.4 and at most 0.66656. We conjecture the lower bound to be tight.
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graph theory equivalent due to Erdős and Sós was resolved by Balogh et al. (2017).

Theorem (Parczyk and S., 2024+)

At least 0.4 and at most 0.66656. We conjecture the lower bound to be tight.



1. Why this problem? 2 slides

Rainbow Schur triples and anti-Ramsey properties

Theorem (Alekseev and Savchev, 1987; Schönheim, 1990)

Every 3-coloring of [n] needs to contain an un-Schur triple, i.e., a rainbow Schur triple,
for large enough n as long as each color class covers at least a 1/4 proportion of [n].

Question. What is the maximum proportion of Schur triples that can be rainbow?

This (surprisingly) seems to not have been explicitly asked before, even though the
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2. Constructive lower bounds 2 slides

Two obvious candidates

Intervals. cint : i 7→


blue if 1 ≤ i < n/3
red if n/3 ≤ i < 2n/3
green if 2n/3 ≤ i ≤ n

gives 2/9 = 0.2.

0 n
3

2n
3

n

Modulus. cmod : i 7→


red if i ≡ 1 mod 4
blue if i ≡ 2 mod 4
green if i ≡ 3 mod 4
blue if i ≡ 0 mod 4

gives 3/8 = 0.375.

0 n
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2. Constructive lower bounds 2 slides

The best construction

However, the best construction gives 2/5 = 0.4 by combining both ideas

c∗ : i 7→


blue if i is odd and i ≤ 2n/5
red if i is odd and i > 2n/5
green if i is even

.

0 2n/5 n

It was found by looking at the (unique) best solutions for n = 10, 11, 12, ..., 30
obtained by solving a MILP formulation of the underlying problem.
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3. An upper bound 4 slides

Fixing some notation

Schur triples. Let S := {(x , y , z) ∈ [n]3 | x + y = z} and S(z) := {(·, ·, z) ∈ S}, that
is for us Schur triples are ordered and not-necessarily distinct. Clearly

|S| =
(

n
2

)
and |S(z)| = z − 1. (1)

Colorings. For any coloring c : [n] → {1, 2, 3}, write rc(z) for the number of Schur
triples from S(z) that are rainbow under c, so we are interested in an upper bound on

n∑
z=1

rc(z).

Let’s obtain an upper bound through a result in graph theory...
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Relating Schur triples to triangles
Let T = {(v1, v2, v3) | v1 < v2 < v3 ∈ [n + 1]} denote the set of all triangles in Kn+1
and consider the map f : T → S, (v1, v2, v3) 7→ (v2 − v1, v3 − v2, v3 − v1). Let c
induce a coloring

c ′ : E (Kn+1) → {1, 2, 3}, e 7→ c(max e − min e).

Any Schur triple in S(z) exactly corresponds to n + 1 − z triangles and any triangle is
rainbow if the underlying Schur triple is rainbow, so by Balogh et al. (2017)

n∑
z=1

rc(z) (n + 1 − z) ≤
(
1/15 + o(1)

)
n3. (2)

Knowing the upper bound on ∑n
z=1 rc(z) (n + 1 − z), we want one for ∑n

z=1 rc(z).
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A reweighting lemma
Lemma
For any finite set S, functions f , g : S → R≥0, and S0 ⊆ S and f0 : S0 → R satisfying

(i) g |S\S0 > 0
(ii) max g |S0 ≤ min g |S\S0 ,

(iii) f |S0 ≤ f0, and
(iv)

∑
s∈S0 f0(s) g(s) ≥

∑
s∈S f (s) g(s),

we have
∑

s∈S f (s) ≤
∑

s∈S0 f0(s).

An easy bound. Let us first follow the ideas of Graham, Rödl, Ruciński (1996) by
choosing S = [n], f (z) = rc(z), g(z) = n + 1 − z , f0(z) = z − 1, and
S0 = {z | z ≥ z0}, where z0 = z0(n) ∈ [n] is chosen maximal such that

n∑
z=1

rc(z) (n + 1 − z) ≤
n∑

z=z0

(z − 1) (n + 1 − z). (3)
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An easy bound
Writing α = α(n) = z0(n)/n, the lemma tells us that

n∑
z=1

rc(z) ≤
n∑

z=z0

z − 1 =
(
1/2 − α2/2 + o(1)

)
n2. (4)

By maximality of z0 and by (2), we also have

(
1/15 + o(1)

)
n3 ≥

n∑
z=1

rc(z) (n + 1 − z) >
(
1/6 − α2/2 + α3/3 + o(1)

)
n3,

and therefore
∑n

z=1 rc(z) ≤
(
0.33922 + o(1)

)
n2 by (4).

A slightly less easy bound. We assumed that all triples in S(z) are rainbow if
z ≥ z0. Taking this into account, one can push the bound slightly to 0.33328.
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4. Concluding Remarks 2 slide

Why isn’t the bound better?

Two clear avenues for improvement:

1. Choice of z0 is suboptimal. It neither accounts for the partially modular nature of
the extremal construction nor captures the linear dependence of rc(z) on z .

2. The Balogh et al. bound is not tight for our setting. The family of induced
edge-colorings look very different from the known extremal coloring.

Alternative approaches? Fourier transforms and discrete differential approaches all
face challenges when extended to more than two colors. Likewise, flag algebras have
proven difficult to extend to the natural numbers.
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What about arithmetic progressions?

Related question 1. What’s the maximum proportion of k-term arithmetic
progressions that can be rainbow? The case k = 3 was remarked to be 2/3 by Jungić et
al. (2003). This can easily be extended to show that The maximum fraction is at least

m∏
i=1

(1 − 1/pi) if k = pa1
1 · · · pam

m .

by coloring mod p1 · · · pm and at most (1 − 1/k). We again conjecture the lower
bound to be tight.

Related question 2. On can also consider similar questions in Zn instead of [n],
which made the problem easier for monochromatic Schur triples, though here the
optimal constructions seems to depend on the precise prime decomposition of n.
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Thank you for your attention!

Preprint is available at arxiv.org/abs/2410.22024.

arxiv.org/abs/2410.22024
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