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Juanjo Rué Perna and Christoph Spiegel
28th of August 2023

mailto:juan.jose.rue@upc.edu
mailto:spiegel@zib.de


The Rado Multiplicity Problem in Fn
q

1. The Rado Multiplicity Problem 3 slides

2. Constructive Upper Bounds through Blow-ups 2 slides

3. Lower Bounds through Flag Algebras 4 slides

4. Concluding Remarks and Open Problems 1 slide



1. The Rado Multiplicity Problem 3 slides
The Rado Multiplicity problem

Given a coloring γ : Fn
q → [c] and linear map L, we are interested in

SL(γ) def= {s ∈ (Fn
q)m : L(s) = 0, si ̸= sj for i ̸= j , s ∈ γ−1({i})m for some i}. (1)

Rado (1933) tells us that SL(γ) ̸= ∅ for large enough n if L satisfies column condition.

The Rado Multiplicity Problem is concerned with determining

mq,c(L) def= lim
n→∞

min
γ∈Γ(n)

|SL(γ)| / |SL(Fn
q)|.

Limit exists by monotonicity and 0 < mq,c(L) ≤ 1 if L is partition regular. L is
c-common if mq,c(L) = c1−m (the value attained in a uniform random coloring).

This reminds us of an old question of Erdős in graph theory ...
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1. The Rado Multiplicity Problem 3 slides
History of the problem

• Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n],
later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.

• Cameron et al. (2007) showed that the nr. of solutions for linear equations with
an odd nr. of variables only depends on cardinalities of the two color classes.

• Parrilo, Robertson and Saracino (2008) established bounds for the minimum
number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in N).

• For r = 1 and m even, Saad and Wolf (2017) showed that any ‘pair-partitionable’
L is 2-common in Fn

q. Fox, Pham, and Zhao (2021) showed that this is necessary
and Versteegen further generalized their result.

• Kamčev et al. (2021) characterized some non-common L in Fn
q with r > 1.

• Král et al. (2022) characterized 2-common L for q = 2, r = 2, m odd.
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Our results

We are interested in particular L and Fn
q.

Theorem (Rué and S., 2023)

We have 1/10 < mq=5,c=2(L4-AP) ≤ 0.1031746.

Saad and Wolf (2017) previously established an u.b.
of 0.1247 with no no-trivial l.b. known.

Proposition (Rué and S., 2023)

We have mq=3,c=3(L3-AP) = 1/27.

Similar to Cummings et al. (2013) extending a re-
sult of Goodman (1959) about triangles.

Upper bounds
obtained through blow-up
constructions of particular
finite colorings.

Lower bounds
obtained by extending
Razborov’s Flag Algebra
framework.
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2. Constructive Upper Bounds through Blow-ups 2 slides
How to blow up colorings

The bound of Saad and Wolf relied on a Fourier-analytic probabilistic construction.
The ‘quantitatively superior’approach however is to consider blowups:

→ → → ...

Sometimes we have a free element ∗ in which we can iterate the blowup-construction:

∗ →
∗

→
∗

→ ...
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Proofs of the upper bounds

Upper bound of the Theorem
m3,3(L4-AP) ≤ 1/27 follows from the blow-up of this 3-coloring of F3

3:

Upper bound of the Proposition
m5,2(L4-AP) ≤ 13/126 follows from the iterated blow-up of this 2-coloring of F3

5:
∗
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3. Lower Bounds through Flag Algebras 4 slides
Where are Flag Algebras in Additive Combinatorics?

Figure: Cameron, Peter J., Javier Cilleruelo, and Oriol Serra. ”On monochromatic solutions of
equations in groups.” Revista Matemática Iberoamericana 23.1 (2007): 385-395.
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Correctly defining our combinatorial structures

Definition (Partially fixed Morphisms, Monomorphisms, and Isomorphisms)

An affine linear map φ : Fk
q → Fn

q as a t-fixed morphism iff φ(ej) = ej for all 0 ≤ j ≤ t
(where t ≥ −1 and e0 = 0). It is a mono/isomorphism iff it is in/bijective.

This gives us ...
• ... a notion of isomorphic colorings through isomorphisms,
• ... a notion of substructure or sub-coloring through monomorphisms,
• ... a notion of density,
• ... a notion of a ‘type’ through t.

The resulting notion of density crucially satisfies the averaging equality

p(small, large) =
∑

medium
p(small, medium) · p(medium, large). (2)



3. Lower Bounds through Flag Algebras 4 slides
Correctly defining solutions

Problem. How to count solutions through colorings? In Fn
3 for example, the Schur

triple (0, 0, 0), (1, 2, 0), (2, 1, 0) defines a unique 2-dimensional linear subspace, but the
Schur triple (0, 0, 0), (1, 1, 0), (2, 2, 0) does not ...

Definition
The dimension dimt(s) of s ∈ SL is the smallest dimension of a t-fixed subspace
containing it and dimt(L) is the largest dimension of any solution.

Each fully dimensional solution determines a unique dimt(L)-dimensional substructure
in which it lies. Writing St

L(T ) = {s ∈ SL(T ) : dimt(s) = dimt)(L)}, we have

|St
L(Fn

q)| = |S(Fn
q)|

(
1 + o(1)

)
.

Fully-dimensional solution satisfy an averaging equality like (2).
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SOS please someone help me

Definition
The flag algebra A is given by considering linear combinations of colorings, factoring
out relations given by the averaging equality (2) and defining an appropriate product.

Razborov established a bijection between sequences (Gn) where all p(H; Gn) converge
and φ ∈ Hom(A,R) satisfying φ(H) ≥ 0 for all H ∈ G through p(H; Gn) = φ(H).

The semantic cone S = {f ∈ A : ϕ(f ) ≥ 0 for all ϕ ∈ Hom+(A,R)} captures
those algebraic expressions that correspond to density expressions that are ‘true’.

Letting CL ∈ A capturing the behavior of |St
L(Fn

q)|, we can establish a lower bound by
finding and verifying a sum-of-squares (SOS) expression

CL − λ −
k∑

i=1
f 2
i ∈ S. (3)
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Lower bound of the Proposition

m5,2(L4-AP) > 1/10 follows by verifying that over all 3324 2-colorings of F2
5 we have

F1 + F4 + (F2 + F3)/5 − 1/10 ≥
2∑

i=1

(
9/10 ·

q(
Fi ,1 + (5 Fi ,2 − 5 Fi ,3 − 10 Fi ,4)/27

)2y
−1

. . . + 61/162 ·
q(

(Fi ,3 − Fi ,2)/2 + Fi ,4
)2y

−1

)
,

and by noting that F1,1 + F2,1 > 0. Here the relevant flags Fi and Fi ,j are

Flags of type ∅

F1

F2

F3

F4

Flags of type

F1,1

F1,2

F1,3

F1,4

Flags of type

F2,1

F2,2

F2,3

F2,4
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Lower bound of the Theorem

m3,3(L3-AP) ≥ 1/27 follows by verifying that over all all 140 3-colorings of F2
3 we have

Fi − 1/27 ≥ 26/27 ·
q(

Fi ,1 − 99/182 Fi ,2 + 75/208 Fi ,3 − 11/28 Fi ,4 − 3/26 Fi ,5
)2y

−1

. . . + 1685/1911 ·
q(

Fi ,2 − 231/26960 Fi ,3 + 1703/6740 Fi ,4 − 1869/3370 Fi ,5
)2y

−1

. . . + 71779/431360 ·
q(

Fi ,3 − 358196/502453 Fi ,4 − 412904/502453 Fi ,5
)2y

−1

. . . + 5431408/10551513 ·
q(

Fi ,4 − 1/4 Fi ,5
)2y

−1

for any i ∈ {1, 2, 3}. Here the relevant flags Fi and Fi ,j are
Flags of type ∅

F1

F2

F3

Flags of type

F1,1

F1,2

F1,3

F1,4

F1,5

Flags of type

F2,1

F2,2

F2,3

F2,4

F2,5

Flags of type

F3,1

F3,2

F3,3

F3,4

F3,5



The Rado Multiplicity Problem in Fn
q

1. The Rado Multiplicity Problem 3 slides

2. Constructive Upper Bounds through Blow-ups 2 slides

3. Lower Bounds through Flag Algebras 4 slides

4. Concluding Remarks and Open Problems 1 slide



4. Concluding Remarks and Open Problems 1 slide
Open problems and final remarks

• Often one can extract stability results from Flag Algebra certificates.

• Steep computational hurdle: underlying structures grow exponentially (instead of
quadratically for graphs or cubic for 3-uniform hypergraphs)

• No neat notion of subspaces makes generalizing to other groups difficult.

Code is available at github.com/FordUniver/rs_radomult_23

github.com/FordUniver/rs_radomult_23


Thank you for your attention!
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