ISSTIUTE

The Rado Multiplicity Problem in \mathbb{F}_{q}^{n}

Eurocomb 2023 at Charles University Juanjo Rué Perna and Christoph Spiegel

28th of August 2023

The Rado Multiplicity Problem in \mathbb{F}_{q}^{n}

1. The Rado Multiplicity Problem 3 slides
2. Constructive Upper Bounds through Blow-ups

2 slides
3. Lower Bounds through Flag Algebras

4 slides
4. Concluding Remarks and Open Problems

The Rado Multiplicity problem

Given a coloring $\gamma: \mathbb{F}_{q}^{n} \rightarrow[c]$ and linear map L, we are interested in

$$
\begin{equation*}
\mathcal{S}_{L}(\gamma) \stackrel{\text { def }}{=}\left\{\mathbf{s} \in\left(\mathbb{F}_{q}^{n}\right)^{m}: L(\mathbf{s})=\mathbf{0}, s_{i} \neq s_{j} \text { for } i \neq j, \mathbf{s} \in \gamma^{-1}(\{i\})^{m} \text { for some } i\right\} . \tag{1}
\end{equation*}
$$

Rado (1933) tells us that $\mathcal{S}_{L}(\gamma) \neq \emptyset$ for large enough n if L satisfies column condition.

The Rado Multiplicity Problem is concerned with determining

$$
m_{q, c}(L) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \min _{\gamma \in \Gamma(n)}\left|S_{L}(\gamma)\right| /\left|S_{L}\left(\mathbb{F}_{q}^{n}\right)\right|
$$

Limit exists by monotonicity and $0<m_{q, c}(L) \leq 1$ if L is partition regular. L is c-common if $m_{q, c}(L)=c^{1-m}$ (the value attained in a uniform random coloring).

This reminds us of an old question of Erdős in graph theory

The Rado Multiplicity problem

Given a coloring $\gamma: \mathbb{F}_{q}^{n} \rightarrow[c]$ and linear map L, we are interested in

$$
\begin{equation*}
\mathcal{S}_{L}(\gamma) \stackrel{\text { def }}{=}\left\{\mathbf{s} \in\left(\mathbb{F}_{q}^{n}\right)^{m}: L(\mathbf{s})=\mathbf{0}, s_{i} \neq s_{j} \text { for } i \neq j, \mathbf{s} \in \gamma^{-1}(\{i\})^{m} \text { for some } i\right\} . \tag{1}
\end{equation*}
$$

Rado (1933) tells us that $\mathcal{S}_{L}(\gamma) \neq \emptyset$ for large enough n if L satisfies column condition.
The Rado Multiplicity Problem is concerned with determining

$$
m_{q, c}(L) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \min _{\gamma \in \Gamma(n)}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right|
$$

Limit exists by monotonicity and $0<m_{q, c}(L) \leq 1$ if L is partition regular. L is c-common if $m_{q, c}(L)=c^{1-m}$ (the value attained in a uniform random coloring).

This reminds us of an old question of Erdős in graph theory

The Rado Multiplicity problem

Given a coloring $\gamma: \mathbb{F}_{q}^{n} \rightarrow[c]$ and linear map L, we are interested in

$$
\begin{equation*}
\mathcal{S}_{L}(\gamma) \stackrel{\text { def }}{=}\left\{\mathbf{s} \in\left(\mathbb{F}_{q}^{n}\right)^{m}: L(\mathbf{s})=\mathbf{0}, s_{i} \neq s_{j} \text { for } i \neq j, \mathbf{s} \in \gamma^{-1}(\{i\})^{m} \text { for some } i\right\} . \tag{1}
\end{equation*}
$$

Rado (1933) tells us that $\mathcal{S}_{L}(\gamma) \neq \emptyset$ for large enough n if L satisfies column condition.
The Rado Multiplicity Problem is concerned with determining

$$
m_{q, c}(L) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \min _{\gamma \in \Gamma(n)}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right|
$$

Limit exists by monotonicity and $0<m_{q, c}(L) \leq 1$ if L is partition regular. L is c-common if $m_{q, c}(L)=c^{1-m}$ (the value attained in a uniform random coloring).

This reminds us of an old question of Erdős in graph theory ...

History of the problem

- Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n], later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.
- Cameron et al. (2007) showed that the nr. of solutions for linear equations with an odd nr. of variables only depends on cardinalities of the two color classes.
- Parrilo, Robertson and Saracino (2008) established bounds for the minimum number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in \mathbb{N}).
- For $r=1$ and m even, Saad and Wolf (2017) showed that any 'pair-partitionable' L is 2 -common in \mathbb{F}_{q}^{n}. Fox, Pham, and Zhao (2021) showed that this is necessary and Versteegen further generalized their result.
- Kamčev et al. (2021) characterized some non-common L in \mathbb{F}_{q}^{n} with $r>1$.
- Král et al. (2022) characterized 2-common L for $q=2, r=2, m$ odd.

History of the problem

- Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n], later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.
- Cameron et al. (2007) showed that the nr. of solutions for linear equations with an odd nr. of variables only depends on cardinalities of the two color classes.
- Parrilo, Robertson and Saracino (2008) established bounds for the minimum number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in \mathbb{N}).
- For $r=1$ and m even, Saad and Wolf (2017) showed that any 'pair-partitionable' L is 2-common in \mathbb{F}_{q}^{n}. Fox, Pham, and Zhao (2021) showed that this is necessary and Versteegen further generalized their result.
- Kamčev et al. (2021) characterized some non-common L in \mathbb{F}_{q}^{n} with $r>1$.
- Král et al. (2022) characterized 2-common L for $q=2, r=2, m$ odd.

Our results

We are interested in particular L and \mathbb{F}_{q}^{n}.

Theorem (Rué and S., 2023)
We have $1 / 10<m_{q=5, c=2}\left(L_{4-A P}\right) \leq 0.1 \overline{031746}$.
Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial I.b. known.

Proposition (Rué and S., 2023)
We have $m_{q=3, c=3}\left(L_{3-A P}\right)=1 / 27$.
Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

Upper bounds

obtained through blow-up constructions of particular finite colorings.

Lower bounds
obtained by extencling Razborov's Flag Algebra framework.

Our results

We are interested in particular L and \mathbb{F}_{q}^{n}.

Theorem (Rué and S., 2023)
We have $1 / 10<m_{q=5, c=2}\left(L_{4-A P}\right) \leq 0.1 \overline{031746}$.
Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial I.b. known.

Proposition (Rué and S., 2023)
We have $m_{q=3, c=3}\left(L_{3-A P}\right)=1 / 27$.
Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

Upper bounds

 obtained through blow-up constructions of particular finite colorings.
Lower bounds

obtained by extending Razborov's Flag Algebra framework.

The Rado Multiplicity Problem in \mathbb{F}_{q}^{n}

1. The Rado Multiplicity Problem

2. Constructive Upper Bounds through Blow-ups 2 slides
3. Lower Bounds through Flag Algebras

4 slides
4. Concluding Remarks and Open Problems
2. Constructive Upper Bounds through Blow-ups How to blow up colorings

The bound of Saad and Wolf relied on a Fourier-analytic probabilistic construction.
The 'quantitatively superior'approach however is to consider blowups:

Sometimes we have a free element $*$ in which we can iterate the blowup-construction:

2. Constructive Upper Bounds through Blow-ups

How to blow up colorings

The bound of Saad and Wolf relied on a Fourier-analytic probabilistic construction. The 'quantitatively superior'approach however is to consider blowups:

Sometimes we have a free element $*$ in which we can iterate the blowup-construction:

\rightarrow

2. Constructive Upper Bounds through Blow-ups

How to blow up colorings

The bound of Saad and Wolf relied on a Fourier-analytic probabilistic construction. The 'quantitatively superior'approach however is to consider blowups:

Sometimes we have a free element $*$ in which we can iterate the blowup-construction:

2. Constructive Upper Bounds through Blow-ups

Proofs of the upper bounds

Upper bound of the Theorem $m_{3,3}\left(L_{4-\mathrm{AP}}\right) \leq 1 / 27$ follows from the blow-up of this 3-coloring of \mathbb{F}_{3}^{3} :

Upper bound of the Proposition $m_{5,2}\left(L_{4-\mathrm{AP}}\right) \leq 13 / 126$ follows from the iterated blow-up of this 2-coloring of \mathbb{F}_{5}^{3} :

The Rado Multiplicity Problem in \mathbb{F}_{q}^{n}

1. The Rado Multiplicity Problem
2. Constructive Upper Bounds through Blow-ups
3. Lower Bounds through Flag Algebras 4 slides
4. Concluding Remarks and Open Problems

3. Lower Bounds through Flag Algebras

Where are Flag Algebras in Additive Combinatorics?

In the table below we have marked in bold a monochromatic or rainbow arithmetic progression in each 3 -coloring of the 9 -tuples. This proves that any 3 -coloring of any 9 -tuple contains a non-degenerate arithmetic progression of length 3 belonging to M or R.

$111 * * * * * *$	$11221221 *$	$12122111 *$	$1221213 * *$
$112111 * * *$	$11221222 *$	$12122112 *$	$1221221 * *$
$1121121 * *$	112212231	$12122113 *$	$1221222 * *$
$11211221 *$	112212232	121221211	$12212231 *$
$11211222 *$	112212233	121221212	$12212232 *$
$11211223 *$	$1122123 * *$	121221213	$12212233 *$
$1121123 * *$	$112213 * * *$	$12122122 *$	$122123 * * *$
$1121131 * *$	$11222 * * * *$	$12122123 *$	$12213 * * * *$
$1121132 * *$	$11223 * * * *$	$1212213 * *$	$1222 * * * * *$
$1121133 * *$	$1123 * * * * *$	$121222 * * *$	$12231 * * * *$
$112121 * * *$	$12111 * * * *$	$1212231 * *$	$122321 * * *$
$1121221 * *$	$1211211 * *$	$12122321 *$	$12232211 *$

Figure: Cameron, Peter J., Javier Cilleruelo, and Oriol Serra. "On monochromatic solutions of equations in groups." Revista Matemática Iberoamericana 23.1 (2007): 385-395.

Correctly defining our combinatorial structures

Definition (Partially fixed Morphisms, Monomorphisms, and Isomorphisms)
An affine linear map $\varphi: \mathbb{F}_{q}^{k} \rightarrow \mathbb{F}_{q}^{n}$ as a t-fixed morphism iff $\varphi\left(e_{j}\right)=e_{j}$ for all $0 \leq j \leq t$ (where $t \geq-1$ and $e_{0}=0$). It is a mono/isomorphism iff it is in/bijective.

This gives us

- ... a notion of isomorphic colorings through isomorphisms,
- ... a notion of substructure or sub-coloring through monomorphisms,
- ... a notion of density,
- ... a notion of a 'type' through t.

The resulting notion of density crucially satisfies the averaging equality

$$
\begin{equation*}
p(\text { small }, \text { large })=\sum_{\text {medium }} p(\text { small }, \text { medium }) \cdot p(\text { medium, large }) . \tag{2}
\end{equation*}
$$

3. Lower Bounds through Flag Algebras

Correctly defining solutions

Problem. How to count solutions through colorings? In \mathbb{F}_{3}^{n} for example, the Schur triple $(0,0, \overline{0}),(1,2, \overline{0}),(2,1, \overline{0})$ defines a unique 2-dimensional linear subspace, but the Schur triple $(0,0, \overline{0}),(1,1, \overline{0}),(2,2, \overline{0})$ does not \ldots

Definition

The dimension $\operatorname{dim}_{t}(\mathbf{s})$ of $\mathbf{s} \in \mathcal{S}_{\mathcal{L}}$ is the smallest dimension of a t-fixed subspace containing it and $\operatorname{dim}_{t}(L)$ is the largest dimension of any solution.

Each fully dimensional solution determines a unique $\operatorname{dim}_{t}(L)$-dimensional substructure in which it lies. Writing $\left.\mathcal{S}_{L}^{t}(T)=\left\{\mathbf{s} \in \mathcal{S}_{L}(T): \operatorname{dim}_{t}(\mathbf{s})=\operatorname{dim}_{t}\right)(L)\right\}$, we have

$$
\left|\mathcal{S}_{L}^{t}\left(\mathbb{F}_{q}^{n}\right)\right|=\left|\mathcal{S}\left(\mathbb{F}_{q}^{n}\right)\right|(1+o(1)) .
$$

Fully-dimensional solution satisfy an averaging equality like (2).
3. Lower Bounds through Flag Algebras

Correctly defining solutions

Problem. How to count solutions through colorings? In \mathbb{F}_{3}^{n} for example, the Schur triple $(0,0, \overline{0}),(1,2, \overline{0}),(2,1, \overline{0})$ defines a unique 2-dimensional linear subspace, but the Schur triple $(0,0, \overline{0}),(1,1, \overline{0}),(2,2, \overline{0})$ does not \ldots

Definition

The dimension $\operatorname{dim}_{t}(\mathbf{s})$ of $\mathbf{s} \in \mathcal{S}_{L}$ is the smallest dimension of a t-fixed subspace containing it and $\operatorname{dim}_{t}(L)$ is the largest dimension of any solution.

Each fully dimensional solution determines a unique $\operatorname{dim}_{t}(L)$-dimensional substructure in which it lies. Writing $\left.\mathcal{S}_{L}^{t}(T)=\left\{s \in \mathcal{S}_{L}(T): \operatorname{dim}_{t}(s)=\operatorname{dim}_{t}\right)(L)\right\}$, we have

$$
\left|\mathcal{S}_{L}^{t}\left(\mathbb{F}_{q}^{n}\right)\right|=\left|\mathcal{S}\left(\mathbb{F}_{q}^{n}\right)\right|(1+o(1)) .
$$

Fully-dimensional solution satisfy an averaging equality like (2).

Correctly defining solutions

Problem. How to count solutions through colorings? In \mathbb{F}_{3}^{n} for example, the Schur triple $(0,0, \overline{0}),(1,2, \overline{0}),(2,1, \overline{0})$ defines a unique 2-dimensional linear subspace, but the Schur triple $(0,0, \overline{0}),(1,1, \overline{0}),(2,2, \overline{0})$ does not \ldots

Definition

The dimension $\operatorname{dim}_{t}(\mathbf{s})$ of $\mathbf{s} \in \mathcal{S}_{L}$ is the smallest dimension of a t-fixed subspace containing it and $\operatorname{dim}_{t}(L)$ is the largest dimension of any solution.

Each fully dimensional solution determines a unique $\operatorname{dim}_{t}(L)$-dimensional substructure in which it lies. Writing $\left.\mathcal{S}_{L}^{t}(T)=\left\{\mathbf{s} \in \mathcal{S}_{L}(T): \operatorname{dim}_{t}(\mathbf{s})=\operatorname{dim}_{t}\right)(L)\right\}$, we have

$$
\left|\mathcal{S}_{\mathcal{L}}^{t}\left(\mathbb{F}_{q}^{n}\right)\right|=\left|\mathcal{S}\left(\mathbb{F}_{q}^{n}\right)\right|(1+o(1)) .
$$

Fully-dimensional solution satisfy an averaging equality like (2).
3. Lower Bounds through Flag Algebras

SOS please someone help me

Definition

The flag algebra \mathcal{A} is given by considering linear combinations of colorings, factoring out relations given by the averaging equality (2) and defining an appropriate product.

Razborov established a bijection between sequences $\left(G_{n}\right)$ where all $p\left(H ; G_{n}\right)$ converge and $\varphi \in \operatorname{Hom}(\mathcal{A}, \mathbb{R})$ satisfying $\varphi(H) \geq 0$ for all $H \in \mathcal{G}$ through $p\left(H ; G_{n}\right)=\varphi(H)$.

The semantic cone $\mathcal{S}=\left\{f \in \mathcal{A}: \phi(f) \geq 0\right.$ for all $\left.\phi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})\right\}$ captures those algebraic expressions that correspond to density expressions that are 'true'.

Letting $C_{L} \in \mathcal{A}$ capturing the behavior of $\left|\mathcal{S}_{L}^{t}\left(\mathbb{F}_{q}^{n}\right)\right|$, we can establish a lower bound by finding and verifying a sum-of-squares (SOS) expression

3. Lower Bounds through Flag Algebras

SOS please someone help me

Definition

The flag algebra \mathcal{A} is given by considering linear combinations of colorings, factoring out relations given by the averaging equality (2) and defining an appropriate product.

Razborov established a bijection between sequences $\left(G_{n}\right)$ where all $p\left(H ; G_{n}\right)$ converge and $\varphi \in \operatorname{Hom}(\mathcal{A}, \mathbb{R})$ satisfying $\varphi(H) \geq 0$ for all $H \in \mathcal{G}$ through $p\left(H ; G_{n}\right)=\varphi(H)$.

The semantic cone $\mathcal{S}=\left\{f \in \mathcal{A}: \phi(f) \geq 0\right.$ for all $\left.\phi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})\right\}$ captures those algebraic expressions that correspond to density expressions that are 'true'.

Letting $C_{L} \in \mathcal{A}$ capturing the behavior of $\left|\mathcal{S}_{L}^{t}\left(\mathbb{F}_{q}^{n}\right)\right|$, we can establish a lower bound by finding and verifying a sum-of-squares (SOS) expression

$$
\begin{equation*}
C_{L}-\lambda-\sum_{i=1}^{k} f_{i}^{2} \in \mathcal{S} \tag{3}
\end{equation*}
$$

3. Lower Bounds through Flag Algebras

Lower bound of the Proposition

$m_{5,2}\left(L_{4-\mathrm{AP}}\right)>1 / 10$ follows by verifying that over all 33242 -colorings of \mathbb{F}_{5}^{2} we have

$$
\begin{aligned}
& F_{1}+F_{4}+\left(F_{2}+F_{3}\right) / 5-1 / 10 \geq \sum_{i=1}^{2}\left(9 / 10 \cdot \llbracket\left(F_{i, 1}+\left(5 F_{i, 2}-5 F_{i, 3}-10 F_{i, 4}\right) / 27\right)^{2} \rrbracket_{-1}\right. \\
& \ldots+61 / 162 \cdot \llbracket\left(\left(F_{i, 3}-F_{i, 2}\right) / 2+F_{i, 4}\right)^{2} \rrbracket \\
&-1
\end{aligned},
$$

and by noting that $F_{1,1}+F_{2,1}>0$. Here the relevant flags F_{i} and $F_{i, j}$ are

Flags of type \varnothing

Flags of type \square

Flags of type

3. Lower Bounds through Flag Algebras

Lower bound of the Theorem

$m_{3,3}\left(L_{3-\mathrm{AP}}\right) \geq 1 / 27$ follows by verifying that over all all 140 3-colorings of \mathbb{F}_{3}^{2} we have

$$
\begin{aligned}
& F_{i}-1 / 27 \geq 26 / 27 \cdot \llbracket\left(F_{i, 1}-99 / 182 F_{i, 2}+75 / 208 F_{i, 3}-11 / 28 F_{i, 4}-3 / 26 F_{i, 5}\right)^{2} \rrbracket_{-1} \\
& \ldots+1685 / 1911 \cdot \llbracket\left(F_{i, 2}-231 / 26960 F_{i, 3}+1703 / 6740 F_{i, 4}-1869 / 3370 F_{i, 5}\right)^{2} \rrbracket_{-1} \\
& \ldots+71779 / 431360 \cdot \llbracket\left(F_{i, 3}-358196 / 502453 F_{i, 4}-412904 / 502453 F_{i, 5}\right)^{2} \rrbracket_{-1} \\
& \ldots+5431408 / 10551513 \cdot \llbracket\left(F_{i, 4}-1 / 4 F_{i, 5}\right)^{2} \rrbracket_{-1}
\end{aligned}
$$

for any $i \in\{1,2,3\}$. Here the relevant flags F_{i} and $F_{i, j}$ are

Flags of type \varnothing	Flags of type \square	Flags of type \square	Flags of type \square
$F_{1} \square \square \square$	$F_{1,1} \square \square \square$	$F_{2,1} \square \square \square$	$F_{3,1} \square \square \square$
$F_{2} \square \square \square$	$F_{1,2} \square \square \square$	$F_{2,2} \square \square \square$	$F_{3,2} \square \square \square$
$F_{3} \square \square \square$	$F_{1,3} \square \square \square$	$F_{2,3} \square \square \square$	$F_{3,3} \square \square \square$
	$F_{1,4} \square \square \square$	$F_{2,4} \square \square \square$	$F_{3,4} \square \square \square$
	$F_{1,5} \square \square \square$	$F_{2,5} \square \square \square$	$F_{3,5} \square \square \square$

The Rado Multiplicity Problem in \mathbb{F}_{q}^{n}

1. The Rado Multiplicity Problem
2. Constructive Upper Bounds through Blow-ups
3. Lower Bounds through Flag Algebras
4. Concluding Remarks and Open Problems 1 slide
5. Concluding Remarks and Open Problems

Open problems and final remarks

- Often one can extract stability results from Flag Algebra certificates.
- Steep computational hurdle: underlying structures grow exponentially (instead of quadratically for graphs or cubic for 3-uniform hypergraphs)
- No neat notion of subspaces makes generalizing to other groups difficult.

Code is available at github.com/FordUniver/rs_radomult_23

Thank you for your attention!

