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f,}’sﬁy 1. The Rado Multiplicity Problem
The Rado Multiplicity problem

Given a coloring v : Fg — [c] and linear map L, we are interested in
Si(v) &ef {se (Fg)": L(s) =0,s; #sjfori # j,s € 7L ({i})™ for some i}. (1)

Rado (1933) tells us that S;(v) # 0 for large enough n if L satisfies column condition.
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Limit exists by monotonicity and 0 < mg (L) < 1 if L is partition regular.
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The Rado Multiplicity problem

Given a coloring v : Fg — [c] and linear map L, we are interested in
Si(v) def {se (Fg)": L(s) =0,s; #sjfori # j,s € 7L ({i})™ for some i}. (1)

Rado (1933) tells us that S;(v) # 0 for large enough n if L satisfies column condition.

The Rado Multiplicity Problem is concerned with determining

ma.c(L) = lim  min SLO/ IS

n— o0 Er

Limit exists by monotonicity and 0 < mg (L) < 1 if L is partition regular. L is
c-common if mg (L) = c}~™ (the value attained in a uniform random coloring).

This reminds us of an old question of Erdés in graph theory ...



f,}’sﬁy 1. The Rado Multiplicity Problem
History of the problem

= Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n],
later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.

= Cameron et al. (2007) showed that the nr. of solutions for linear equations with
an odd nr. of variables only depends on cardinalities of the two color classes.

= Parrilo, Robertson and Saracino (2008) established bounds for the minimum
number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in N).
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= Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n],
later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.

= Cameron et al. (2007) showed that the nr. of solutions for linear equations with
an odd nr. of variables only depends on cardinalities of the two color classes.

= Parrilo, Robertson and Saracino (2008) established bounds for the minimum

number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in N).

= For r =1 and m even, Saad and Wolf (2017) showed that any ‘pair-partitionable’
L is 2-common in Fg. Fox, Pham, and Zhao (2021) showed that this is necessary
and Versteegen further generalized their result.

= Kamcev et al. (2021) characterized some non-common L in Fg with r > 1.

= Krél et al. (2022) characterized 2-common L for g = 2, r =2, m odd.
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We are interested in particular L and Fg.

Theorem (Rué and S., 2023)
We have 1/10 < mg—s c=2(Ls-ap) < 0.1031746.

Saad and Wolf (2017) previously established an u.b.
of 0.1247 with no no-trivial l.b. known.

Proposition (Rué and S., 2023)
We have mg—3 c—3(L3.4ap) = 1/27.

Similar to Cummings et al. (2013) extending a re-
sult of Goodman (1959) about triangles.
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We are interested in particular L and Fg.

Theorem (Rué and S., 2023)
We have 1/10 < mg—s c=2(Ls-ap) < 0.1031746.

Saad and Wolf (2017) previously established an u.b.
of 0.1247 with no no-trivial l.b. known.

Proposition (Rué and S., 2023)
We have mg—3 c—3(L3.4ap) = 1/27.

Similar to Cummings et al. (2013) extending a re-
sult of Goodman (1959) about triangles.

Upper bounds
obtained through blow-up
constructions of particular
finite colorings.

Lower bounds
obtained by extending
Razborov's Flag Algebra
framework.
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How to blow up colorings

The bound of Saad and Wolf relied on a Fourier-analytic probabilistic construction.
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2. Constructive Upper Bounds through Blow-ups

Proofs of the upper bounds
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Upper bound of the Theorem
m33(La-ap) < 1/27 follows from the blow-up of this 3-coloring of F3:

UE O0E HEE
UE OEE EHE
OEfm NN (U&=

Upper bound of the Proposition
ms o(La-ap) < 13/126 follows from the iterated blow-up of this 2-coloring of IFg’:

FLLEE
EEEE
ECEE
OO =E
DOEO0

AL
HE RS
ECEE
H HEE
EEEEC

EECLE
HE RS
LR
LIRS
DEOOE
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Where are Flag Algebras in Additive Combinatorics?

In the table below we have marked in bold a monochromatic or rainbow
arithmetic progression in each 3-coloring of the 9-tuples. This proves that
any 3-coloring of any 9-tuple contains a non-degenerate arithmetic progres-
sion of length 3 belonging to M or R.

111 %%k 11221221+ 12122111+ 1221213 %%
112111 %% % 11221222+ 12122112+ 1221221 %%
1121121 %+ 112212231 12122113+ 1221222 %%
11211221+« 112212232 121221211 12212231+«
11211222« 112212233 121221212 12212232+«
11211223 * 1122123 %% 121221213 12212233+
1121123 %% 11221 3%%x 12122122+« 122123 %%
1121131 %+ 11222%xxx 12122123+ 12213 % %%
1121132x%% 11223 x%%x% 1212213 %% 1222 %% *%x%
1121133+ 1123 %% %%k 121222% %% 122315 *xx%
112121 %% % 12111 %xxx 1212231 %% 122321 %%
1121221 %% 1211211 %% 12122321+« 12232211+

1101000 10313103101 10100000 10000010

Figure: Cameron, Peter J., Javier Cilleruelo, and Oriol Serra. "On monochromatic solutions of
equations in groups.” Revista Matematica Iberoamericana 23.1 (2007): 385-395.
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Correctly defining our combinatorial structures

Definition (Partially fixed Morphisms, Monomorphisms, and Isomorphisms)

An affine linear map ¢ : IF’C‘, — [Fg as a t-fixed morphism iff ¢(e;) = e forall 0 <j <t
(where t > —1 and ey = 0). It is a mono/isomorphism iff it is in/bijective.

This gives us ...

= ... a notion of isomorphic colorings through isomorphisms,
= ... a notion of substructure or sub-coloring through monomorphisms,
= ... a notion of density,

= ... a notion of a ‘type’ through t.

The resulting notion of density crucially satisfies the averaging equality

p(small,large) = Z p(small,medium) - p(medium, large). (2)

medium
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Correctly defining solutions

Problem. How to count solutions through colorings? In F3 for example, the Schur
triple (0,0,0),(1,2,0),(2,1,0) defines a unique 2-dimensional linear subspace, but the
Schur triple (0,0,0),(1,1,0),(2,2,0) does not ...

Definition
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Correctly defining solutions

Problem. How to count solutions through colorings? In [F5 for example, the Schur
triple (0,0,0),(1,2,0),(2,1,0) defines a unique 2-dimensional linear subspace, but the
Schur triple (0,0,0),(1,1,0),(2,2,0) does not ...

Definition

The dimension dim.(s) of s € S; is the smallest dimension of a t-fixed subspace
containing it and dim;(L) is the largest dimension of any solution.

Each fully dimensional solution determines a unique dim¢(L)-dimensional substructure
in which it lies.
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Correctly defining solutions

Problem. How to count solutions through colorings? In [F5 for example, the Schur
triple (0,0,0),(1,2,0),(2,1,0) defines a unique 2-dimensional linear subspace, but the
Schur triple (0,0,0),(1,1,0),(2,2,0) does not ...

Definition
The dimension dim.(s) of s € S; is the smallest dimension of a t-fixed subspace
containing it and dim;(L) is the largest dimension of any solution.

Each fully dimensional solution determines a unique dim¢(L)-dimensional substructure
in which it lies. Writing Sf(T) = {s € Si(T) : dim(s) = dim¢)(L)}, we have

ISL(EQ] = IS(FQI (1 + o(1)).

Fully-dimensional solution satisfy an averaging equality like (2).
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SOS please someone help me

Definition

The flag algebra A is given by considering linear combinations of colorings, factoring
out relations given by the averaging equality (2) and defining an appropriate product.

Razborov established a bijection between sequences (G,,) where all p(H; G,) converge
and ¢ € Hom(A,R) satisfying @o(H) > 0 for all H € G through p(H; G,) = ¢(H).

The semantic cone S = {f € A: ¢(f) > 0 for all $ € Hom™ (A, R)} captures
those algebraic expressions that correspond to density expressions that are ‘true’.
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SOS please someone help me

Definition

The flag algebra A is given by considering linear combinations of colorings, factoring
out relations given by the averaging equality (2) and defining an appropriate product.

Razborov established a bijection between sequences (G,,) where all p(H; G,) converge
and ¢ € Hom(A,R) satisfying @o(H) > 0 for all H € G through p(H; G,) = ¢(H).

The semantic cone S = {f € A: ¢(f) > 0 for all $ € Hom™ (A, R)} captures
those algebraic expressions that correspond to density expressions that are ‘true’.

Letting C; € A capturing the behavior of |S}(F7)[, we can establish a lower bound by
finding and verifying a sum-of-squares (SOS) expression

k
CL—-A—)Y fPes. (3)
i=1

]



BERLIN

f,}’sﬁy 3. Lower Bounds through Flag Algebras
Lower bound of the Proposition

ms 2(La-ap) > 1/10 follows by verifying that over all 3324 2-colorings of F2 we have
2
Fit Fa+ (Pt F3)/5=1/10 > 3" (9/10- [(Fix + (5Fio — 5 Fiz = 10 Fia)/27)°]
i=1
L +61/162- [((Fis — Fi2)/2+ Fia)’] ),

and by noting that Fi 1 + F>1 > 0. Here the relevant flags F; and F;; are

Flags of type & Flags of type O Flags of type O

f OOO0O0 A, OO F, CNEEE
F OO r, OO F, DHEEEC]
F, EEEN Fs O ]EEN P I [ |
r, INEENE F., IHNNNN F, ECO0O0



3. Lower Bounds through Flag Algebras
Lower bound of the Theorem
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m33(Ls.ap) > 1/27 follows by verifying that over all all 140 3-colorings of F3 we have

Fi—1/27 >26/27 - [(Fi1 — 99/182 Fip + 75/208 i3 — 11/28 F4 — 3/26 Fi5)°] |
..+ 1685/1911 - [(Fi2 — 231/26960 F; 3 + 1703/6740 Fi 4 — 1869/3370 Fi5)’] _,
..+ 71779/431360 - [(F; 3 — 358196/502453 Fi 4 — 412004/502453 Fi5)°] _,
...+ 5431408/10551513 - [(Fia — 1/4 Fi5)?]

for any i € {1,2,3}. Here the relevant flags F; and F;; are

Flags of type @ Flags of type O Flags of type O Flags of type W

£ 00 ., OO0 R, OEE F, HHE
r HDEE r, OO R, CHE F, WO
r HHEHN R, OOE R, CEH F, HE]
. CEZH r, CHC] r. LD
s M Fs OE[C] | |
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Open problems and final remarks

= Often one can extract stability results from Flag Algebra certificates.

= Steep computational hurdle: underlying structures grow exponentially (instead of
quadratically for graphs or cubic for 3-uniform hypergraphs)

= No neat notion of subspaces makes generalizing to other groups difficult.

Code is available at github.com/FordUniver/rs_radomult_23


github.com/FordUniver/rs_radomult_23
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Thank you for your attention!
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