

Towards Flag Algebras in Additive Combinatorics

FoCM 2023 – Workshop I.3: Graph Theory and Combinatorics Juanjo Rué Perna and **Christoph Spiegel** 13th of June 2023

Towards Flag Algebras in Additive Combinatorics

1. The Trouble with Defining Additive Flag Algebras

2. The Rado Multiplicity Problem

3. Proofs of Lower Bounds

1. The Trouble with Defining Additive Flag Algebras **The Motivation**

Why are there no Flag Algebras in Additive Combinatorics?

Given $T \subset G$ and linear map L, we care about

$$\mathcal{S}_{L}(\mathcal{T}) \stackrel{\text{def}}{=} \{ \mathbf{s} \in \mathcal{T}^{m} : L(\mathbf{s}) = \overline{0}, s_{i} \neq s_{j} \text{ for } i \neq j \},$$
(1)

where $G = [n], \mathbb{Z}_n, \mathbb{Z}_p, \mathbb{F}_q^n, \dots$ and *L* represents AP, Schur triples, ...

- Ramsey (1930) ↔ Schur (1917), van der Waerden (1927), and Rado (1933)
- Mantel (1907) and Turán (1941) + Roth (1953) and Szémeredi (1975)
- regularity lemma (Szémeredi, 1978) ↔ arithmetic regularity (Green, 2005)
- random graph $G(n,p) \iff$ random sets $[n]_p, (\mathbb{Z}_n)_p, \ldots$
- blowup-type constructions are relevant in both

1. The Trouble with Defining Additive Flag Algebras **The Motivation**

Why are there no Flag Algebras in Additive Combinatorics?

Given $T \subset G$ and linear map L, we care about

$$\mathcal{S}_{L}(\mathcal{T}) \stackrel{\text{def}}{=} \{ \mathbf{s} \in \mathcal{T}^{m} : L(\mathbf{s}) = \overline{0}, s_{i} \neq s_{j} \text{ for } i \neq j \},$$
(1)

where $G = [n], \mathbb{Z}_n, \mathbb{Z}_p, \mathbb{F}_q^n, \ldots$ and L represents AP, Schur triples, ...

- Ramsey (1930) ↔ Schur (1917), van der Waerden (1927), and Rado (1933)
- Mantel (1907) and Turán (1941) 🚧 Roth (1953) and Szémeredi (1975)
- regularity lemma (Szémeredi, 1978) + arithmetic regularity (Green, 2005)
- random graph $G(n,p) \iff$ random sets $[n]_p, (\mathbb{Z}_n)_p, \ldots$
- blowup-type constructions are relevant in both

1. The Trouble with Defining Additive Flag Algebras **The Motivation**

Why are there no Flag Algebras in Additive Combinatorics?

Given $T \subset G$ and linear map L, we care about

$$\mathcal{S}_{L}(\mathcal{T}) \stackrel{\text{def}}{=} \{ \mathbf{s} \in \mathcal{T}^{m} : L(\mathbf{s}) = \overline{0}, s_{i} \neq s_{j} \text{ for } i \neq j \},$$
(1)

where $G = [n], \mathbb{Z}_n, \mathbb{Z}_p, \mathbb{F}_q^n, \dots$ and L represents AP, Schur triples, ...

- Ramsey (1930) ↔ Schur (1917), van der Waerden (1927), and Rado (1933)
- Mantel (1907) and Turán (1941) ↔ Roth (1953) and Szémeredi (1975)
- regularity lemma (Szémeredi, 1978) ↔ arithmetic regularity (Green, 2005)
- random graph $G(n,p) \iff$ random sets $[n]_p, (\mathbb{Z}_n)_p, \ldots$
- blowup-type constructions are relevant in both

1. The Trouble with Defining Additive Flag Algebras

The Motivation

In the table below we have marked in bold a monochromatic or rainbow arithmetic progression in each 3-coloring of the 9-tuples. This proves that any 3-coloring of any 9-tuple contains a non-degenerate arithmetic progression of length 3 belonging to M or R.

111 * * * * * *	11221221*	12122111*	$1\ 2\ 2\ 1\ {f 2}\ {f 3}$ * *
$112111\mathbf{*}\mathbf{*}\mathbf{*}$	11221 2222 *	1 2 12 2 11 2 *	1221221**
1121121**	$1\ 1\ 2\ 2\ 1\ 2\ {\bf 3}\ {\bf 1}$	$1\ 2\ 1\ 2\ 2\ 1\ 1\ 3*$	$1\ 2\ 2\ 1\ {f 2}\ {f 2}\ {f 2}\ {f *}\ *$
11211221*	$1\ 1\ 2\ 2\ 1\ 2\ 3\ 2$	121221211	$1\ 2\ 2\ 1\ 2\ {f 2}\ {f 3}\ {f 1}\ *$
$112112222\mathbf{*}$	1 1 2 2 1 2 2 3 3	$1\ 2\ 1\ 2\ {f 2}\ 1\ {f 2}\ 1\ {f 2}$	1 2 21 2 23 2 *
112 1 1 223 *	1122 123 **	$1\ 2\ 1\ 2\ 2\ 1\ {f 2}\ {f 3}$	$1\ 2\ 2\ 1\ 2\ 3\ 3\ *$
1121 123 **	112 213 ***	1 2 12 2 12 2 *	1 2 2 1 2 3 * * *
1121131**	$11222\mathbf{*}***$	$12122{f 1}{f 2}{f 3}*$	12 213 ****
$1121{f 1}{f 3}{f 2}**$	${f 1}1{f 2}2{f 3}****$	$1212{f 2}{f 1}{f 3}**$	1 2 2 2 * * * * *
11 2 1 1 3 3 **	1123*****	121 2222 ***	1 2 2 3 1 * * * *
112121***	12111****	$1212{f 2}{f 3}{f 1}**$	1 2 2 3 2 1 * * *
112121**	1211211**	$12122{f 3}{f 2}{f 1}*$	$1\ 2\ 2\ {f 3}\ 2\ {f 2}\ 1\ {f 1}$ *
1101000	10110101.	10100000	19999919

Figure: Cameron, Peter J., Javier Cilleruelo, and Oriol Serra. "On monochromatic solutions of equations in groups." Revista Matemática Iberoamericana 23.1 (2007): 385-395.

What we need is a rule like

$$p(\text{small}, \text{large}) = \sum_{\text{medium}} p(\text{small}, \text{medium}) \cdot p(\text{medium}, \text{large})$$
 (2)

for some notion of density

$$p(\texttt{struct}, \bullet) = \frac{\# \text{ substructures isomorphic to struct in } \bullet}{\# \text{ substructures of same size as struct in } \bullet}.$$

Finding a working notion of substructure seems difficult in [n], \mathbb{Z}_n , \mathbb{Z}_p ...

Can we formulate Flag Algebras for $GF(q)^n = \mathbb{F}_a^n$?

(3)

What we need is a rule like

$$p(\text{small}, \text{large}) = \sum_{\text{medium}} p(\text{small}, \text{medium}) \cdot p(\text{medium}, \text{large})$$
 (2)

(3)

for some notion of density

$$p(\texttt{struct}, \bullet) = \frac{\# \text{ substructures isomorphic to struct in } \bullet}{\# \text{ substructures of same size as struct in } \bullet}.$$

Finding a working notion of substructure seems difficult in [n], \mathbb{Z}_n , \mathbb{Z}_p ...

Can we formulate Flag Algebras for $GF(q)^n = \mathbb{F}_q^n$?

What we need is a rule like

$$p(\text{small}, \text{large}) = \sum_{\text{medium}} p(\text{small}, \text{medium}) \cdot p(\text{medium}, \text{large})$$
 (2)

(3)

for some notion of density

$$p(\texttt{struct}, \bullet) = \frac{\# \text{ substructures isomorphic to struct in } \bullet}{\# \text{ substructures of same size as struct in } \bullet}.$$

Finding a working notion of substructure seems difficult in [n], \mathbb{Z}_n , \mathbb{Z}_p ...

Can we formulate Flag Algebras for $GF(q)^n = \mathbb{F}_q^n$?

Towards Flag Algebras in Additive Combinatorics

1. The Trouble with Defining Additive Flag Algebras

2. The Rado Multiplicity Problem

3. Proofs of Lower Bounds

2. The Rado Multiplicity Problem

Counting monochromatic solutions

Given a coloring $\gamma: \mathbb{F}_q^n \to [c]$ and linear map, we are interested in

$$\mathcal{S}_{L}(\gamma) \stackrel{\text{def}}{=} \bigcup_{i=1}^{c} \mathcal{S}_{L}(\gamma^{-1}(\{i\})).$$
(4)

Rado (1933) tells us that $S_L(\gamma) \neq \emptyset$ for large enough *n* if *L* satisfies *column condition*.

The Rado Multiplicity Problem is concerned with determining

$$m_{q,c}(L) \stackrel{\text{def}}{=} \lim_{n \to \infty} \min_{\gamma \in \Gamma(n)} |\mathcal{S}_L(\gamma)| / |\mathcal{S}_L(\mathbb{F}_q^n)|$$

Limit exists by monotonicity and $0 < m_{q,c}(L) \le 1$ if L is partition regular. L is c-common if $m_{q,c}(L) = c^{1-m}$ (the value attained in a uniform random coloring).

2. The Rado Multiplicity Problem

Counting monochromatic solutions

Given a coloring $\gamma: \mathbb{F}_q^n \to [c]$ and linear map, we are interested in

$$\mathcal{S}_{L}(\gamma) \stackrel{\text{def}}{=} \bigcup_{i=1}^{c} \mathcal{S}_{L}(\gamma^{-1}(\{i\})).$$
(4)

Rado (1933) tells us that $S_L(\gamma) \neq \emptyset$ for large enough *n* if *L* satisfies *column condition*.

The Rado Multiplicity Problem is concerned with determining

$$m_{q,c}(L) \stackrel{\text{def}}{=} \lim_{n \to \infty} \min_{\gamma \in \Gamma(n)} |\mathcal{S}_L(\gamma)| / |\mathcal{S}_L(\mathbb{F}_q^n)|$$

Limit exists by monotonicity and $0 < m_{q,c}(L) \le 1$ if L is partition regular. L is *c*-common if $m_{q,c}(L) = c^{1-m}$ (the value attained in a uniform random coloring).

- Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n], later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.
- Cameron et al. (2007) showed that the nr. of solutions for linear equations with **an odd nr. of variables** only depends on cardinalities of the two color classes.
- Parrilo, Robertson and Saracino (2008) established bounds for the minimum number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in ℕ).
- For r = 1 and m even, Saad and Wolf (2017) showed that any 'pair-partitionable' L is 2-common in ℝⁿ_q. Fox, Pham, and Zhao (2021) showed that this is necessary.
- Kamčev et al. (2021) characterized some non-common L in \mathbb{F}_{a}^{n} with r > 1.
- Král et al. (2022) characterized 2-common L for q = 2, r = 2, m odd.

- Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n], later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.
- Cameron et al. (2007) showed that the nr. of solutions for linear equations with **an odd nr. of variables** only depends on cardinalities of the two color classes.
- Parrilo, Robertson and Saracino (2008) established bounds for the minimum number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in ℕ).
- For r = 1 and m even, Saad and Wolf (2017) showed that any 'pair-partitionable' L is 2-common in ℝⁿ_q. Fox, Pham, and Zhao (2021) showed that this is necessary.
- Kamčev et al. (2021) characterized some non-common L in \mathbb{F}_{q}^{n} with r > 1.
- Král et al. (2022) characterized 2-common L for q = 2, r = 2, m odd.

2. The Rado Multiplicity Problem **Our results**

Theorem (Rué and S., 2023)

We have $1/10 < m_{q=5,c=2}(L_{4-AP}) \le 0.1\overline{031746}$.

Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial l.b. known.

Proposition (Rué and S., 2023)

We have $m_{q=3,c=3}(L_{3-AP}) = 1/27$.

Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

Proofs are computational:

- Upper bounds obtained through (iterated) blow-up constructions found through exhaustive and heuristic searches.
- Lower bounds obtained through SOS expressions in Flag Algebras found through an SDP solver.

Towards Flag Algebras in Additive Combinatorics

1. The Trouble with Defining Additive Flag Algebras

2. The Rado Multiplicity Problem

3. Proofs of Lower Bounds

The Right Notion of Substructure

Definition (Partially fixed Morphisms, Monomorphisms, and Isomorphisms)

An affine linear map $\varphi : \mathbb{F}_q^k \to \mathbb{F}_q^n$ as a *t*-fixed morphism iff $\varphi(e_j) = e_j$ for all $0 \le j \le t$ (where $t \ge -1$ and $e_0 = 0$). It is a mono/isomorphism iff it is in/bijective.

This gives us ...

- ... a notion of isomorphic colorings through isomorphisms,
- ... a notion of substructure or sub-coloring through monomorphisms,
- ... a notion of density through (3) that satisfies (2),
- ... blow-up bounds through not-necessarily-injective morphisms,
- ... a notion of a 'type' through t,

Remark

The 'base' case is t = -1 for invariant structures and t = 0 otherwise.

The Right Notion of Substructure

Definition (Partially fixed Morphisms, Monomorphisms, and Isomorphisms)

An affine linear map $\varphi : \mathbb{F}_q^k \to \mathbb{F}_q^n$ as a *t*-fixed morphism iff $\varphi(e_j) = e_j$ for all $0 \le j \le t$ (where $t \ge -1$ and $e_0 = 0$). It is a mono/isomorphism iff it is in/bijective.

This gives us ...

- ... a notion of isomorphic colorings through isomorphisms,
- ... a notion of substructure or sub-coloring through monomorphisms,
- ... a notion of density through (3) that satisfies (2),
- ... blow-up bounds through not-necessarily-injective morphisms,
- ... a notion of a 'type' through t,

Remark

The 'base' case is t = -1 for invariant structures and t = 0 otherwise.

The Right Notion of Substructure

Definition (Partially fixed Morphisms, Monomorphisms, and Isomorphisms)

An affine linear map $\varphi : \mathbb{F}_q^k \to \mathbb{F}_q^n$ as a *t*-fixed morphism iff $\varphi(e_j) = e_j$ for all $0 \le j \le t$ (where $t \ge -1$ and $e_0 = 0$). It is a mono/isomorphism iff it is in/bijective.

This gives us ...

- ... a notion of isomorphic colorings through isomorphisms,
- ... a notion of substructure or sub-coloring through monomorphisms,
- ... a notion of density through (3) that satisfies (2),
- ... blow-up bounds through not-necessarily-injective morphisms,
- ... a notion of a 'type' through t,

Remark

The 'base' case is t = -1 for invariant structures and t = 0 otherwise.

Counting solutions through colorings

Problem. How to count solutions through colorings? In \mathbb{F}_3^n for example, the Schur triple $(0,0,\overline{0}), (1,2,\overline{0}), (2,1,\overline{0})$ defines a unique 2-dimensional linear subspace, but the Schur triple $(0,0,\overline{0}), (1,1,\overline{0}), (2,2,\overline{0})$ does not ...

Definition

The dimension dim_t(s) of $s \in S_L$ is the smallest dimension of a *t*-fixed subspace containing it and dim_t(L) is the largest dimension of any solution.

Each fully dimensional solution determines a unique $\dim_t(L)$ -dimensional substructure in which it lies. Writing $S_L^t(T) = \{ \mathbf{s} \in S_L(T) : \dim_t(\mathbf{s}) = \dim_t)(L) \}$, we have

$$|\mathcal{S}_L^t(\mathbb{F}_q^n)| = |\mathcal{S}(\mathbb{F}_q^n)| (1 + o(1)).$$

So fully-dimensional solutions is what we are *actually* counting!

Counting solutions through colorings

Problem. How to count solutions through colorings? In \mathbb{F}_3^n for example, the Schur triple $(0,0,\overline{0}), (1,2,\overline{0}), (2,1,\overline{0})$ defines a unique 2-dimensional linear subspace, but the Schur triple $(0,0,\overline{0}), (1,1,\overline{0}), (2,2,\overline{0})$ does not ...

Definition

The dimension dim_t(s) of $s \in S_L$ is the smallest dimension of a *t*-fixed subspace containing it and dim_t(L) is the largest dimension of any solution.

Each fully dimensional solution determines a unique dim_t(L)-dimensional substructure in which it lies. Writing $S_L^t(T) = \{ s \in S_L(T) : \dim_t(s) = \dim_t)(L) \}$, we have

$$|\mathcal{S}_L^t(\mathbb{F}_q^n)| = |\mathcal{S}(\mathbb{F}_q^n)| (1 + o(1)).$$

So fully-dimensional solutions is what we are *actually* counting!

Counting solutions through colorings

Problem. How to count solutions through colorings? In \mathbb{F}_3^n for example, the Schur triple $(0,0,\overline{0}), (1,2,\overline{0}), (2,1,\overline{0})$ defines a unique 2-dimensional linear subspace, but the Schur triple $(0,0,\overline{0}), (1,1,\overline{0}), (2,2,\overline{0})$ does not ...

Definition

The dimension dim_t(s) of $s \in S_L$ is the smallest dimension of a *t*-fixed subspace containing it and dim_t(L) is the largest dimension of any solution.

Each fully dimensional solution determines a unique dim_t(L)-dimensional substructure in which it lies. Writing $S_L^t(T) = \{ \mathbf{s} \in S_L(T) : \dim_t(\mathbf{s}) = \dim_t)(L) \}$, we have

$$|\mathcal{S}^t_L(\mathbb{F}^n_q)| = |\mathcal{S}(\mathbb{F}^n_q)| \ (1+o(1)).$$

So fully-dimensional solutions is what we are *actually* counting!

SOS please someone help me

Definition

The (unfixed or 0-fixed) *flag algebra* A is given by considering linear combinations of (unfixed or 0-fixed) colorings, factoring out (2) and defining an appropriate product.

The *semantic cone*

$$S = \{ f \in \mathcal{A} : \phi(f) \ge 0 \text{ for all } \phi \in \operatorname{Hom}^+(\mathcal{A}, \mathbb{R}) \}$$
(5)

captures those algebraic expressions corresponding to density expressions that are 'true'. We can establish a lower bound through

$$C_L - \lambda - \sum_{i=1}^{k} (f_i)^2 \in \mathcal{S},$$
(6)

where $C_L \in A$ counts fully-dimensional solutions. Such sum-of-squares (SOS) expressions are solvable through Semidefinite Programming (SDP).

SOS please someone help me

Definition

The (unfixed or 0-fixed) *flag algebra* A is given by considering linear combinations of (unfixed or 0-fixed) colorings, factoring out (2) and defining an appropriate product.

The semantic cone

$$S = \{ f \in \mathcal{A} : \phi(f) \ge 0 \text{ for all } \phi \in \operatorname{Hom}^+(\mathcal{A}, \mathbb{R}) \}$$
(5)

captures those algebraic expressions corresponding to density expressions that are 'true'. We can establish a lower bound through

$$C_L - \lambda - \sum_{i=1}^k (f_i)^2 \in \mathcal{S},$$
(6)

where $C_L \in A$ counts fully-dimensional solutions. Such sum-of-squares (SOS) expressions are solvable through Semidefinite Programming (SDP).

SOS please someone help me

Definition

The (unfixed or 0-fixed) *flag algebra* A is given by considering linear combinations of (unfixed or 0-fixed) colorings, factoring out (2) and defining an appropriate product.

The semantic cone

$$S = \{ f \in \mathcal{A} : \phi(f) \ge 0 \text{ for all } \phi \in \operatorname{Hom}^+(\mathcal{A}, \mathbb{R}) \}$$
(5)

captures those algebraic expressions corresponding to density expressions that are 'true'. We can establish a lower bound through

$$C_L - \lambda - \sum_{i=1}^k (f_i)^2 \in \mathcal{S},\tag{6}$$

where $C_L \in A$ counts fully-dimensional solutions. Such sum-of-squares (SOS) expressions are solvable through Semidefinite Programming (SDP).

3. Proofs of Lower Bounds Lower bound of the Proposition

 $m_{5,2}(L_{4-\mathrm{AP}}) > 1/10$ follows by verifying that

$$F_{1} + F_{4} + (F_{2} + F_{3})/5 - 1/10 \ge \sum_{i=1}^{2} \left(9/10 \cdot \left[\left(F_{i,1} + (5 F_{i,2} - 5 F_{i,3} - 10 F_{i,4})/27 \right)^{2} \right] \right]_{-1} \\ \dots + 61/162 \cdot \left[\left((F_{i,3} - F_{i,2})/2 + F_{i,4} \right)^{2} \right]_{-1} \right),$$

over all 3324 2-colorings of \mathbb{F}_5^2 (and by noting that $F_{1,1}+F_{2,1}>0$), where

ZUSE INSTITUTE BERLIN

Lower bound of the Theorem

 $m_{3,3}(L_{3-\mathrm{AP}}) \geq 1/27$ follows by verifying that

$$F_{i} - 1/27 \ge 26/27 \cdot \left[(F_{i,1} - 99/182 F_{i,2} + 75/208 F_{i,3} - 11/28 F_{i,4} - 3/26 F_{i,5})^{2} \right]_{-1}$$

... + 1685/1911 \cdot $\left[(F_{i,2} - 231/26960 F_{i,3} + 1703/6740 F_{i,4} - 1869/3370 F_{i,5})^{2} \right]_{-1}$
... + 71779/431360 \cdot $\left[(F_{i,3} - 358196/502453 F_{i,4} - 412904/502453 F_{i,5})^{2} \right]_{-1}$
... + 5431408/10551513 \cdot $\left[(F_{i,4} - 1/4 F_{i,5})^{2} \right]_{-1}$

- Often one can extract stability results from Flag Algebra certificates.
- Steep computational hurdle: underlying structures grow exponentially
- No neat notion of subspaces makes generalizing to [n] / Z_n / Z_p difficult.

Code is available at github.com/FordUniver/rs_radomult_23

Thank you for your attention!

4. Appendix

ZUSE INSTITUTE BERLIN

How many colorings are there?

q/n	1	2	3	4	5	q/n	1	2	3	4	5
2	3	5	10	32	382	2	4	8	20	92	2744
3	4	14	1028			3	6	36	15636		
4	8	1648				4	14	7724			
5	6	3324				5	12	72 192			

Table: Number of 2-colorings of \mathbb{F}_q^n up to unfixed (left) and 0-fixed (right) isomorphism.

q/n	1	2	3	4	q/n	1	2	3	4
2	6	15	60	996	 2	9	30	180	6546
3	10	140	25665178		3	18	648		
4	30	1630868			4	69	8 451 708		
5	24	70 793 574			5	72			

Table: Number of 3-colorings of \mathbb{F}_q^n up to unfixed (left) and 0-fixed (right) isomorphism.

We can *blow up* an colorings into a sequence of colorings with n tending to infinity.

Computing the density of solutions in the limit of this sequence is easy: simply check *not-necessarily-injective* subcolorings in the base construction. **This gives us an immediate upper bound from** *any* **coloring we can come up with** ...

In some cases we have a *free element* in which we can iterate the blowup-construction.

Upper bound of the Proposition

 $m_{5,2}(L_{4-\mathrm{AP}}) \leq 13/126$ follows from the iterated blow-up of this 2-coloring of \mathbb{F}_5^3 :

Upper bound of the Theorem

 $m_{3,3}(L_{4-AP}) \leq 1/27$ follows from the blow-up of this 3-coloring of \mathbb{F}_3^3 :

Appendix

Counting Monomorphisms

We write $[n]_q = \sum_{i=0}^{n-1} q^i$ for the *q*-number of *n*, $[n]_q! = [n]_q \cdots [2]_q [1]_q$ for the *q*-factorial of *n*, and let the *Gaussian multinomial coefficient* be

$$\binom{n}{k_1,\ldots,k_m}_q = \frac{[n]_q!}{[k_1]_q!\cdots[k_m]_q![n-k']_q!}.$$

Lemma (Double Counting)

We have

ZUSE

$$|\operatorname{Mon}_t(k_1,\ldots,k_m;n')| |\operatorname{Mon}_t(n';n)| = |\operatorname{Mon}_t(k_1,\ldots,k_m;n)| {n-k' \choose n'-k'}_q$$

for any $t \ge -1$, $k_1, \ldots, k_m \ge t^+$, and $n \ge n' \ge k' = k_1 + \ldots + k_m - (m-1) t^+$.

Lemma (Unfixed Monomorphisms)

For any integers $0 \le k_1, \ldots, k_m$ and $n \ge k' = k_1 + \ldots + k_m$, we have

$$|\operatorname{Mon}_{-1}(k_1,\ldots,k_m;n)| = q^{n-k'} {n \choose k_1,\ldots,k_m}_q.$$

Lemma (Fixed Monomorphisms)

For integers $0 \le t \le k_1, \ldots, k_m$ and $n \ge k' = k_1 + \ldots + k_m - (m-1)t$, we have

$$|\operatorname{Mon}_t(k_1,\ldots,k_m;n)| = {n-t \choose k_1-t,\ldots,k_m-t}_q.$$