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Forcing Graphs to be Forcing

1. Graph Homomorphisms and Random Graphs 2 slides

2. Graph Algebras and Operators 4 slides

3. Applications to Both Conjectures 4 slides



1. Graph Homomorphisms and Random Graphs 2 slides
Sidorenko’s conjecture

Definition. Let t(G , H) denote the probability that a random map ϕ : VG → VE is a
graph homomorphism from G to H, i.e., {ϕ(v), ϕ(w)} ∈ EH for any {v , w} ∈ EG .

Conjecture (Erdős and Simonovits 1984; Sidorenko 1984 / 1991 / 1993)

Every bipartite graph G satisfies t(G , H) ≥ t(K2, H)eG for any graph H.

Without guarantee of completeness, graphs known to be Sidorenko include ...
... trees, even cycles, complete bipartite graphs (Sidorenko ’93), and cubes (Hatami ’10)
... bipartite graphs with one vertex complete to the other side (Conlon, Fox, Sudakov ’10)
... cartesian product of a tree with a Sidorenko graph (Kim, Lee, Lee ’16)
... cartesian product of an even cycle with a Sidorenko graph (Conlon, Kim, Lee, Lee ’18)
... certain tree like graphs (Szegedy ’11 and Kim, Lee, Lee ’16)
... strongly tree-decomposable graphs (Conlon, Kim, Lee, Lee ’18)

A recursive procedure (Lee and Szegedy ’11 and Szegedy ’14) covers the above. Additionally,
there is a degree condition (Conlon and Lee ’21) and certain subdivisions (Im, Li, Liu ’24).
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1. Graph Homomorphisms and Random Graphs 2 slides
The forcing conjecture

Definition. A sequence (Hn)n∈N is p-quasi-random if t(G , Hn) =
(
1 + o(1)

)
peG for

every graph G . Equivalently (Chung, Graham, Wilson ’89), we can also only require
t(K2, Hn) =

(
1 + o(1)

)
p textand t(C4, Hn) =

(
1 + o(1)

)
p4. (1)

Question. Which graphs are forcing, i.e., can replace C4 in (1)?

Conjecture (Skokan and Thoma 2004; Conlon, Fox, and Sudakov 2010)

Every bipartite graph with at least one cycle is forcing.

The forcing conjecture implies Sidorenko’s conjecture and has been shown for ...
... even cycles (Chung, Graham, Wilson 1989)
... complete bipartite graphs (Skokan, Thoma 2004)
... two vertices from one side complete to the other (Conlon, Fox, Sudakov 2010)
... one vertex complete to the other side (Szegedy 2011)
... some more complex families (Conlon, Lee 2017)
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2. Graph Algebras and Operators 4 slides
Definition of the graph algebra

Definition. Writing G≃ for the family of equivalence classes of graphs and R[G≃] for
all formal linear combinations of them, we can define a product with unit ∅ through

G · F =
∑

H∈GVG ⊔VF
H[VG ]=G∧H[VF ]=F

H.

The algebra is obtained through A = R[G≃]/⟨∅ − •⟩ with • being a single vertex.

Definition
An element f ∈ A is positive if it is in the closure of the cone R+[G≃], i.e., if f − ε has
a representative with positive coefficients for any ε.

Observation. f ≥ 0 if and only if t(f , H) ≥ 0 for all graphs H, so G is Sidorenko iff

ni(G) :=
∑

G⊆H
H ≥ K eG

2 . (2)
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2. Graph Algebras and Operators 4 slides
Comparison to other graph algebras

Graph Limits
(Lovász, Szegedy 2006)

Flag Algebras
(Razborov 2007)

this

injective? (mostly) yes yes yes
map / subset? map subset map

induced? (mostly) no yes yes
types? yes yes vertex labels

product non-induced induced non-induced
positivity graphons positive hom. cone closure

All of these are effectively equivalent and the following are equal for a given f ∈ A:

• f is in the closure of R+[G≃].
• t(f , H) ≥ 0 for any graph H.
• limn inj(f , Hn) ≥ 0 for any convergent

sequence (Hn)n∈N.
• t(f , W ) ≥ 0 for any graphon W .
• ϕ(f ) ≥ 0 for any ϕ ∈ Hom+(A,R).
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2. Graph Algebras and Operators 4 slides
Order-preserving operators

Definition (Downward functors and upward transformations)

A function η is a downward functor if it maps finite sets to finite sets and finite
injections α : M ↪→ N to finite injections η(α) : η(M) ↪→ η(N) s.t.

η(α) ◦ η(β) = η(α ◦ β) ∀α : N ↪→ T , β : M ↪→ N. (3)

A function τ : Gη(·) → G· is an η-upward transformation if the following commutes:

τ(indη(α) G) = indα τ(G) ∀α : M ↪→ N, G ∈ Gη(N). (4)

Remark. Any τ is determined by its restriction to Gη({0,1}).

Proposition (Kiem, Parczyk, S. 2024+)

The operator given by JGK(η,τ) = ∑
H∈Gη(VG ), τ(H)=G H defines an order-preserving map.
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2. Graph Algebras and Operators 4 slides
Order-preserving operators (contd.)

Definition (Relevant downward functors)

Let η(k) map M to
(M

k
)

and α : M ↪→ N to the injection mapping {m1, . . . , mk} to
{α(m1), . . . , α(mk)}. Given two downward functors η and η′, we also let

• ... η ⊔ η′ map M to η(M) ⊔ η′(M) and α to η(α) ⊔ η′(α) and
• ... η × η′ map M to η(M) × η′(M) and α to (m, m′) 7→

(
η(α)(m), η′(α)(m′)

)
.

In particular, we write id = η(1) and constS = η(0) ⊔ . . . ⊔ η(0).

Relevant examples.
1. Let η = id ⊔ constS and τ map to an edge iff {u, v}, {u, s}, {v , s} are edges ∀s.
2. Let η = id × constS and τ map to an edge iff {(u, s), (v , s)} are edges ∀s ∈ S.
3. Let η = id ⊔η(2) and τ map to an edge iff

{
u, {u, v}, v} defines a P2 from u to v .
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3. Applications to Both Conjectures 4 slides
An example: the tensor power trick

Lemma (Sidorenko 1993)

If ni(G) ≥ c K eG
2 for some c > 0, then G is Sidorenko.

Proof. Let the downward functor be given by η = id × constS and let τ map supersets
of perfect matchings to an edge. We have

Jni(G)K(η,τ) = ni(G)|S| (5)

and applying this operator to the assumption ni(G) ≥ c K eG
2 therefore gives

ni(G) ≥ c1/|S| K eG
2

for any S. Letting |S| → ∞, it follows that G is Sidorenko by (2). □
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Blowups

Theorem (Kiem, Parczyk, S. 2024+)

The m-fold blowup Bm(G) of a Sidorenko graph G is forcing for m ≥ 2.

Proof. Let the downward functor be given by η = id × const[m] and let τ map
supersets of complete bipartite graphs to edges. We have

Jni(G)K(η,τ) = ni
(
Bm(G)

)
(6)

and applying this operator to the assumption that G is Sidorenko therefore gives

ni
(
Bm(G)

)
= Jni(G)K(η,τ) ≥ JK eG

2 K(η,τ) = ni
(
Km,m

)eG ≥
(
Km2

2
)eG = K eBm(G)

2 .

It follows that Bm(G) is forcing since Km,m is forcing as long as m ≥ 2. □
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The subdivision subF ,s,t(G) of a a Sidorenko graph G by another Sidorenko graph F
symmetric w.r.t s and t is Sidorenko. If F is forcing, then so is the subdivision.

Proof. Let the downward functor be given by η = η(2) × constVF \{s,t} and let τ map
supersets of correctly oriented copies of F to edges. We have
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3. Applications to Both Conjectures 4 slides
Box product, hypergraphs, forcing pairs, and M5

Through some additional tools, we can also show that ...
... loose and even hypergraphs obtained from a Sidorenko graph are also

Sidorenko (though Sidorenko’s conjecture does not generalize to hypergraphs).
... If (F , G) is a forcing pair, then so are the K3-subdivisions of F and G as well as

the Pk -subdvisions of F and G for any k ≥ 2 (and some more families).
... If G is Sidorenko, then so is the box product G□K2.
... The Möbius ladder M5 can be described as a subdivision of C5 with a twisted

C4, but C5 does not fulfill the necessary inequality to show that M5 is Sidorenko.
Using (Bennett, Dudek, Lidický, and Pikhurko 2010) one can however show that

ni(M5) ≥ 4K 13
2 − 6K 11

2 + 4K 9
2 − K 7

2 ,

improving on the lower bound ni(M5) ≥ K 17
2 implied by a result of (Conlon, Fox,

Sudakov 2010) when K2 ≥ 0.74142.
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C4, but C5 does not fulfill the necessary inequality to show that M5 is Sidorenko.
Using (Bennett, Dudek, Lidický, and Pikhurko 2010) one can however show that

ni(M5) ≥ 4K 13
2 − 6K 11

2 + 4K 9
2 − K 7

2 ,

improving on the lower bound ni(M5) ≥ K 17
2 implied by a result of (Conlon, Fox,

Sudakov 2010) when K2 ≥ 0.74142.



ごごご清清清聴聴聴ああありりりがががとととうううごごござざざいいいままましししたたた！！！

Köszönöm szépen a figyelmet!

Preprint available at arxiv.org/abs/2412.12904

arxiv.org/abs/2412.12904
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