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f,}’sﬁy 1. Graph Homomorphisms and Random Graphs
Sidorenko’s conjecture

Definition. Let t(G, H) denote the probability that a random map ¢ : Vg — Vg is a
graph homomorphism from G to H, i.e., {¢(v),p(w)} € Ey for any {v,w} € Eg.

Conjecture (Erd8s and Simonovits 1984; Sidorenko 1984 / 1991 / 1993)
Every bipartite graph G satisfies t(G, H) > t(Ka, H)¢ for any graph H.
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Sidorenko’s conjecture

Definition. Let t(G, H) denote the probability that a random map ¢ : Vg — Vg is a
graph homomorphism from G to H, i.e., {¢(v),p(w)} € Ey for any {v,w} € Eg.

Conjecture (Erd8s and Simonovits 1984; Sidorenko 1984 / 1991 / 1993)
Every bipartite graph G satisfies t(G, H) > t(Ka, H)¢ for any graph H.

Without guarantee of completeness, graphs known to be Sidorenko include ...

. trees, even cycles, complete bipartite graphs (Sidorenko '93), and cubes (Hatami '10)
. bipartite graphs with one vertex complete to the other side (Conlon, Fox, Sudakov '10)
. cartesian product of a tree with a Sidorenko graph (Kim, Lee, Lee '16)

. cartesian product of an even cycle with a Sidorenko graph (Conlon, Kim, Lee, Lee '18)
. certain tree like graphs (Szegedy '11 and Kim, Lee, Lee '16)

. strongly tree-decomposable graphs (Conlon, Kim, Lee, Lee '18)

A recursive procedure (Lee and Szegedy '11 and Szegedy '14) covers the above. Additionally,
there is a degree condition (Conlon and Lee '21) and certain subdivisions (Im, Li, Liu '24).
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,Z,:’sﬁy 1. Graph Homomorphisms and Random Graphs
The forcing conjecture

Definition. A sequence (H,)nen is p-quasi-random if t(G, H,) = (1 + o(1)) pe¢ for
every graph G. Equivalently (Chung, Graham, Wilson '89), we can also only require

t(Ka, Hp) = (L+0(1)) p  textand t(Cs, H,) = (1 + o(1)) p*. (1)

Question. Which graphs are forcing, i.e., can replace Gy in (1)7

Conjecture (Skokan and Thoma 2004; Conlon, Fox, and Sudakov 2010)

Every bipartite graph with at least one cycle is forcing.

The forcing conjecture implies Sidorenko’s conjecture and has been shown for ...

. even cycles (Chung, Graham, Wilson 1989)

. complete bipartite graphs (Skokan, Thoma 2004)

. two vertices from one side complete to the other (Conlon, Fox, Sudakov 2010)
. one vertex complete to the other side (Szegedy 2011)

. some more complex families (Conlon, Lee 2017)
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H[VG]=GAH[VF]=F
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Graph Limits Flag Algebras this
(Lovész, Szegedy 2006) (Razborov 2007)

injective? (mostly) yes yes yes

map / subset? map subset map

induced? (mostly) no yes yes
types? yes yes vertex labels
product non-induced induced non-induced
positivity graphons positive hom. cone closure



f,}’sﬁy 2. Graph Algebras and Operators
Comparison to other graph algebras

Graph Limits Flag Algebras this
(Lovész, Szegedy 2006) (Razborov 2007)

injective? (mostly) yes yes yes

map / subset? map subset map

induced? (mostly) no yes yes
types? yes yes vertex labels
product non-induced induced non-induced
positivity graphons positive hom. cone closure

All of these are effectively equivalent and the following are equal for a given € A:

» fisin the closure of RT[G~]. sequence (Hp)nen-
» t(f,H) > 0 for any graph H. » t(f, W) > 0 for any graphon W.
= lim,inj(f, H,) > 0 for any convergent = ¢(f) > 0 for any ¢ € Hom™ (A, R).
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Order-preserving operators

Definition (Downward functors and upward transformations)

A function n is a downward functor if it maps finite sets to finite sets and finite
injections v : M < N to finite injections n(«) : n(M) < n(N) s.t.

n(a)on(B)=nlacB) Va:N<—T,5: M N. (3)
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Order-preserving operators

Definition (Downward functors and upward transformations)

A function n is a downward functor if it maps finite sets to finite sets and finite
injections v : M < N to finite injections n(«) : n(M) < n(N) s.t.

n(a)on(B)=n(aoB) VYa:N<— T,5: M N. (3)
A function 7 : gn(,) — G. is an n-upward transformation if the following commutes:

7(indy(a) G) = inda 7(G) Va: M <= N, G € G,(y)- (4)

Remark. Any 7 is determined by its restriction to G, (0,1})-

Proposition (Kiem, Parczyk, S. 2024+)
The operator given by [G] () = ZHEQW(VG),T(HFG H defines an order-preserving map.
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Order-preserving operators (contd.)

Definition (Relevant downward functors)
Let n) map M to (A;’) and a: M < N to the injection mapping {my, ..., my} to
{a(m1),...,a(my)}. Given two downward functors 7 and 7, we also let

» .. nUn map M to n(M)Un'(M) and « to n(a) U n'(a) and

» . xn map M ton(M) xn'(M) and a to (m,m’) — (n(a)(m),n'(a)(m’)).
In particular, we write id = (1) and consts = 7 U ... U7,

Relevant examples.
1. Let n =idUconsts and 7 map to an edge iff {u, v}, {u,s}, {v,s} are edges Vs.
2. Let n = id x consts and T map to an edge iff {(u,s),(v,s)} are edges Vs € S.
3. Let n = idUn® and 7 map to an edge iff {u,{u, v}, v} defines a P, from u to v.

Remark. [-](, ) is not multiplicative in general, see for example 7 = id i consts when
S 0. It is however multiplicative in the particular case of 7 = n(k) for some k > 1.
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Lemma (Sidorenko 1993)
Ifni(G) > c K¢ for some ¢ > 0, then G is Sidorenko.

Proof. Let the downward functor be given by n = id x consts and let 7 map supersets
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and applying this operator to the assumption ni(G) > ¢ K5 therefore gives
ni(G) > /I8l ke

for any S.
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Lemma (Sidorenko 1993)
Ifni(G) > c K¢ for some ¢ > 0, then G is Sidorenko.

Proof. Let the downward functor be given by n = id x consts and let 7 map supersets
of perfect matchings to an edge. We have

[ni(G)](n,r) = ni(G)"! (5)
and applying this operator to the assumption ni(G) > ¢ K5 therefore gives
ni(G) > /I8l ke

for any S. Letting |S| — oo, it follows that G is Sidorenko by (2). O
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supersets of complete bipartite graphs to edges.
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Blowups

Theorem (Kiem, Parczyk, S. 2024+ )
The m-fold blowup B,,(G) of a Sidorenko graph G is forcing for m > 2.

Proof. Let the downward functor be given by 1 = id x const(,, and let 7 map
supersets of complete bipartite graphs to edges. We have

[ni(G)(n,r) = ni(Bm(G)) (6)

and applying this operator to the assumption that G is Sidorenko therefore gives

Ni(Bm(G)) = [ni(G)] () = [K5 T (n,r) = ni(Km,m) % > (K2m2)ec _ K;sm(c)'

It follows that B,(G) is forcing since K, m is forcing as long as m > 2. O
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The subdivision subr s +(G) of a a Sidorenko graph G by another Sidorenko graph F
symmetric w.r.t s and t is Sidorenko. If F is forcing, then so is the subdivision.

Proof. Let the downward functor be given by n = n(? x consty,\ (s,;} and let 7 map
supersets of correctly oriented copies of F to edges.
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Subdivisions

Theorem (Kiem, Parczyk, S. 2024+ )

The subdivision subr s +(G) of a a Sidorenko graph G by another Sidorenko graph F
symmetric w.r.t s and t is Sidorenko. If F is forcing, then so is the subdivision.

Proof. Let the downward functor be given by n = n(? x consty,\ (s,;} and let 7 map
supersets of correctly oriented copies of F to edges. We have

[[ni(G)]](n,T) = ni(SUbF,s,t(G)) (7)

and applying this operator to the assumption that G is Sidorenko therefore gives

G)

m(Bm(G)) = [[ni(G)]](n,T) > [[KZGGH(T],T) = ni(F>eG > (K2eF)eG = KSSUbFTS’t( :

It follows that subf s +(G) is Sidorenko and in fact also forcing if F is forcing. g
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Sidorenko (though Sidorenko's conjecture does not generalize to hypergraphs).
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... If (F, G) is a forcing pair, then so are the K3-subdivisions of F and G as well as
the Pjy-subdvisions of F and G for any k > 2 (and some more families).
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f,}’sﬁy 3. Applications to Both Conjectures
Box product, hypergraphs, forcing pairs, and M

Through some additional tools, we can also show that ...

. loose and even hypergraphs obtained from a Sidorenko graph are also
Sidorenko (though Sidorenko's conjecture does not generalize to hypergraphs).

. If (F, G) is a forcing pair, then so are the K3-subdivisions of F and G as well as
the Pjy-subdvisions of F and G for any k > 2 (and some more families).

. If G is Sidorenko, then so is the box product GLIK>.



BERLIN

f,}’sﬁy 3. Applications to Both Conjectures
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Through some additional tools, we can also show that ...

. loose and even hypergraphs obtained from a Sidorenko graph are also
Sidorenko (though Sidorenko's conjecture does not generalize to hypergraphs).

. If (F, G) is a forcing pair, then so are the K3-subdivisions of F and G as well as
the Pjy-subdvisions of F and G for any k > 2 (and some more families).

. If G is Sidorenko, then so is the box product GLIK>.

. The Mobius ladder Ms can be described as a subdivision of Cs with a twisted
Cy, but Cs does not fulfill the necessary inequality to show that Ms is Sidorenko.
Using (Bennett, Dudek, Lidicky, and Pikhurko 2010) one can however show that

ni(Ms) > 4K33 — 6K31 + 4K5 — KJ,

improving on the lower bound ni(Ms) > K217 implied by a result of (Conlon, Fox,
Sudakov 2010) when Ky > 0.74142.
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