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1. A motivating example: A Problem of Erdős 3 slides

The Ramsey Multiplicity Problem

Theorem (Ramsey 1930 – Multicolor Version)

For any t ∈ N and c ≥ 2 there exists Rc(t) ∈ N such that any c-edge-coloring of the
complete graph of order at least Rc(t) contains a monochromatic clique of size t.

A well-known question

Can we determine Rc(t)?
A related question

How many cliques are required?

Theorem (Goodman 1959 – Asymptotic Version)

Asymptotically at least 1/4 of all triangles are monochromatic in any 2-edge-coloring.
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1. A motivating example: A Problem of Erdős 3 slides

Beyond Goodman’s Result
Notation. Let Gn = {G : E (Kn) → [c]} denote all c-edge-colorings of Kn, Gi the
subgraph of Kn given by color i and kt(Gi) the fraction of t-cliques in Gi .

Problem (Ramsey Multiplicity)

What is the value of mc(t) = limn minG∈Gn kt(G1) + . . . + kt(Gc)?

The success of the binomial random graph for m2(3) lead to the following conjecture.

Conjecture (Erdős 1962)

m2(t) = 21−(t
2) for any t ≥ 2. False for t ≥ 4 (Thomason 1989)

The exact value of even m2(4) remains unknown with little progress!
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1. A motivating example: A Problem of Erdős 3 slides

More than two colors
Goodman also asked about more than two colors and Fox noted the upper bound

mc(3) ≤ 1/Rc−1(3)2.

Theorem (Cummings et al. 2013 – Asymptotic Version)

Asymptotically at least 1/25 of all triangles are monochromatic in any 3-edge-coloring.

Proofs for such statements are computational, relying on Flag Algebras. Getting an
answer for larger t or larger c means solving a more challenging optimization problem.

Theorem (Kiem, Pokutta, S. 2023)

Asymptotically at least 1/256 of all triangles are monoc. in any 4-edge-coloring.
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2. What are Flag Algebras: Double Counting on Steroids 3 slides

A trivial computational lower bound
Let k(G) = kt(G1) + . . . + kt(Gc). Through double counting, we have

k(G) =
∑

H∈Gℓ

p(H; G) k(H) (1)

as long as ℓ ≤ v(G), where p(H; G) is the density of H in G . This implies

k(G) ≥ min
H∈Gℓ

k(H). (2)

If we had aH satisfying ∑
H∈Gℓ

p(H; G ′) aH ≤ o(1) for all G ′, this would imply

k(G) ≥ min
H∈Gℓ

k(H) − aH . (3)

Flag Algebras allow us to find exactly such coefficients aH!
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Formalisation through Algebras
With G = ⋃

n Gn and K = {k(G) −
∑

H∈Gℓ
p(H; G) k(H) | G ∈ Gn, ℓ ≤ n} ⊂ RG, let

A = RG/ span K (4)

be the Flag Algebra (of the empty type) with product H · H ′ = ∑
G p(H, H ′; G) G .

Theorem (Razborov 2007; convergent sequences ↔ positive homomorphisms)

Sequences of graphs in which all p(H; Gn) converge correspond one-to-one with
φ ∈ Hom(A,R) satisfying φ(H) ≥ 0 for all H ∈ G through p(H; Gn) = φ(H).

This means that any expression (such as + − 1/4) that is in the semantic cone

S = {f ∈ A : φ(f ) ≥ 0 for all positive homomorphisms φ} (5)

is ‘true’ in the world of combinatorics. How do we prove something is in S?
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SOS please someone help me
One approach to establishing the positivity in a partially ordered algebra are sum-of-
squares (SOS) expressions (giving the aH). Goodman’s argument for example states

+ =
[[
3/4

(
−

)2
+ 1/4

]]
•

= 3/4
[[ 2]]

•
− 3/2

[[
·

]]
•

+ 3/4
[[ 2]]

•
+ 1/4.

This is a certificate, that is verified over ‘large enough’graphs (ℓ = 3 for Goodman):[[ 2]]
•

[[ 2]]
•

[[
·

]]
•

aH

1 0 1 0 0 3/4
0 0 1/3 0 1/3 -1/4
0 0 0 1/3 1/3 -1/4
0 1 0 1 0 3/4

The SOS expression can be found using Semidefinite Programming (SDP).
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Computational barriers
Increasing ℓ improves bounds and makes the SDP harder:

ℓ value time memory
6 0.02875 0.2s ±0.0 81.2MB ±24.7

7 0.02918 4.9s ±0.1 126.9MB ±26.3

8 0.02942 1.8h ±0.1 1.8GB ±0.0

Table: Difficulty of SDP problem formulations for m2(4) using CSDP

The number of colorings grows like c(n
2)/n!, i.e., more colors means more colorings.

However, they also give us more symmetries in the problem!

How can we use combinatorial information to reduce these SDP formulations?
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Leveraging Symmetries
Graph isomorphisms only consider (partial) vertex permutations, but many relevant
parameters are invariant under (partial) color permutations! In flag algebra
terminology, each such permutation is a an order- and unit-preserving linear map
L : A → A, e.g. satisfying L( + ) = + .

Method 1 Combine and therefore reduce the number of constraints by up to c!. This
is strictly stronger than considering edge partitions (Balogh et al. 2017).

Method 2 Reduce the number of variables by block diagonalization. Many existing
approaches like Gatermann and Parrilo (2004), Murota, Kanno, Kojima, Kojima (2010)
and Bachoc et al. (2012) exist (applying Schur’s Lemma).
(i) All symmetries are easily determined, (ii) need real or even rational matrices, (iii)
data matrices are sparse, (iv) only deal with specific groups. We therefore split groups
into isotypic components, strengthening the anti-invariant split of Razborov (2010).
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Concluding remarks and open problems

Theorem (Kiem, Pokutta, S. 2023)

Asymptotically at least 1/256 of all triangles are monoc. in any 4-edge-coloring.

• Rounding is another challenge (we used exact rational LP solver SoPlex.)
• Often one can extract stability results from Flag Algebra certificates.
• Other problems (e.g. rainbow cliques) have similar symmetries.
• Additional combinatorial information should further reduce the difficulty.
• We still need improved solvers in addition to improved problem formulations.

Open Problem: m3,...,3 = (R3,...,3 − 1)−2 for all c?
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Thank you for your attention!
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