
Extending the
Continuum of
Six-Colorings
KOLKOM 2024 at Heidelberg University
K. Mundinger, S. Pokutta, C. Spiegel and M. Zimmer
11th of October 2024



Results are joint work with...

Konrad Mundinger
Zuse Institut Berlin

Techn. Universität Berlin

Sebastian Pokutta
Zuse Institut Berlin

Techn. Universität Berlin

Max Zimmer
Zuse Institut Berlin

Techn. Universität Berlin

mailto:munbdinger@zib.de
mailto:pokutta@zib.de
mailto:zimmer@zib.de


Extending the Continuum of Six-Colorings

1. The Chromatic Number of the Plane 4 slides

2. Neural Networks as Universal Approximators 3 slides

3. The Continuum of Six-Colorings 4 slides

4. An Outlook on Other Applications 1 slide



1. The Chromatic Number of the Plane 4 slides
The Hadwiger-Nelson problem

Problem (Nelson 1950, but also Hadwiger, Erdős, Gardner, Moser, Harary, Tutte, ...)

What is the smallest number of colors sufficient for coloring the plane in such a way
that no two points of the same color are a unit distance apart?

Considering the infinite graph with vertex set E2 and edges {x , y} for any x , y ∈ E2

with ∥x − y∥ = 1, we are studying the chromatic number of the plane χ(E2).

Theorem (N.G. de Bruijn, P. Erdős 1951)

Assuming AoC any graph is k-colorable iff every finite subgraph of it is k-colorable.

This problem has a long and complicated history which has been well documented by
Soifer over 14 pages in The New Mathematical Coloring Book (2024) ...
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The history of the problem

p. 24 of The New Mathematical Coloring Book by Alexander Soifer, 2024
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The history of the problem

p. 32 of The New Mathematical Coloring Book by Alexander Soifer, 2024



1. The Chromatic Number of the Plane 4 slides
Lower bounds through unit distance graphs

Lower bounds are given by finding unit distance graphs of large chromatic number.

Definition
A graph G = (V , E ) is a unit distance graph if there exists an embedding f : V → E2

of its vertices in the plane s.t. ∥f (u) − f (v)∥ = 1 if and only {u, v} ∈ E .

A triangle gives a lower bound of 3 and the Moser spindle a lower bound of 4 (1961).

Theorem (Aubrey D.N.J. de Grey, 2018)

There is a unit distance graph on 20 425 vertices with chromatic number 5.

Exoo and Ismailescu found a simpler construction with 627 vertices, Heule one with
553 vertices, and Jaan Parts, as part of Polymath16, one with 510 vertices.
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Upper bounds through colorings

Upper bounds are given by explicit colorings g : E2 → [c] := {1, . . . , c}, usually
derived through tesselations using simple polytopal shapes, which give

5 ≤ χ(E2) ≤ ...

Question. Can we use computers to find colorings g : E2 → [c] so that{
x ∈ E2 | g(x) = g(y) for any y ∈ B1(x)

}
= ∅?

Idea. Use a parameterized and easily differentiable family gθ : E2 → ∆c and find

arg min
θ

E
[∫

B1(x)
gθ(x) · gθ(y) dy |x ∈ E2

]
.
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2. Neural Networks as Universal Approximators 3 slides
What are Neural Networks?

Figure: Feedforward neural network or multilayer perceptron architecture.
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Figure: Convolutional neural network architecture.
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What are Neural Networks?

Figure: Transformer neural network architecture.
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What are Neural Networks?

Just a parameterized family of functions gθ with some convenient properties...

input
Blackbox

heavily parameterized
easily differentiable

universal approximator

output

Theorem (Universal Approximation Theorem)

Feedforward neural networks with certain activation functions are dense (w.r.t.
compact convergence) in the space of continuous functions.
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2. Neural Networks as Universal Approximators 3 slides
How do we find the correct parameters?

Idea. What if we use batch gradient descent to ‘train’ gθ : E2 → ∆6 to minimize

L(θ) =
∫

[−b,b]×[−b,b]

∫
B1(x)

gθ(x) · gθ(y) dy dx?

Algorithm. We sample points x (i) ∈ [−b, b] × [−b, b] and y (i) ∈ B1(x) and use that

∇θL(θ) ≈ ∇̂θL(θ) :=
m∑

i=1
∇θ gθ(x (i)) · gθ(y (i))/m,

to adjust the parameters θ with an appropriate step size αk through

θk+1 = θk − αk ∇̂θL(θ).
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2. Neural Networks as Universal Approximators 3 slides
Unfortunately this coloring was already known...

Theorem (Pritikin 1995; refined by Parts 2020)

99.985% of the plane can be colored with 6 colors such that no two points of the same
color are a unit distance apart.

Corollary

Any unit distance graph with chromatic number 7 must have order at least 6 993.



2. Neural Networks as Universal Approximators 3 slides
Unfortunately this coloring was already known...

Theorem (Pritikin 1995; refined by Parts 2020)

99.985% of the plane can be colored with 6 colors such that no two points of the same
color are a unit distance apart.

Corollary

Any unit distance graph with chromatic number 7 must have order at least 6 993.



Extending the Continuum of Six-Colorings

1. The Chromatic Number of the Plane 4 slides

2. Neural Networks as Universal Approximators 3 slides

3. The Continuum of Six-Colorings 4 slides

4. An Outlook on Other Applications 1 slide



3. The Continuum of Six-Colorings 4 slides
Going off-diagonal...

A variant. A c-coloring of the plane has coloring type or realizes (d1, . . . , dc) if color i
does not contain any points at distance di .

Problem (The continuum of six-colorings; Soifer in Nash and Rassias’ Open Problems in Mathematics)

Determine the set of d for which (1, 1, 1, 1, 1, d) can be realized.

Soifer found a coloring for d = 1/
√

5 in 1991. Hoffman and Soifer also found one for
d =

√
2 − 1 in 1993. Both of these are part of a family that covers any

0.414 ≈
√

2 − 1 ≤ d ≤ 1/
√

5 ≈ 0.447.

Theorem (Mundinger, Pokutta, S., Zimmer 2024)

There is a coloring realizing (1, 1, 1, 1, 1, d) for any 0.418 ≤ d ≤ 0.657 and
another (family of) colorings covers any 0.354 ≤ d ≤ 0.553.
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Is this optimal?

Figure: Numerical results showing the percentage of points with some conflict for a given
forbidden distance d in the sixth color found over several minimized over several runs.
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4. An Outlook on Other Applications 1 slide
Open problems and final remarks

The underlying optimization approach is very flexible:

• Can we formalize these colorings as Voronoi diagrams?

• Can we improve the upper bound of the chromatic number of E3 from 15 to 14?

• Can we apply the same ideas to generate graphons and other limit structures?

• Can we use adversarial networks when the objectiv is non-differentiable?

Full description of the two colorings is available at arxiv.org/abs/2404.05509.

arxiv.org/abs/2404.05509


Thank you for your attention!
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