Flag algebras in additive combinatorics

DOxML 2023 at GRIPS
Juanjo Rué Perna and Christoph Spiegel
9th of August 2023

1. Additive Combinatorics 4 slides
2. Constructive upper bounds through blow-ups 3 slides3. Double counting on steroids5 slides
3. Conclusion 1 slide

Additive Combinatorics 101

Let G be a finite (abelian) group of order N or an interval $[N] \stackrel{\text { def }}{=}\{1, \ldots, N\} \subset \mathbb{N}$.

> What can we say about the (linear) structure of subsets $S \subseteq G$ or colorings $\gamma: G \rightarrow[c]$?

Global properties. What can we say about the relation of $|S|$ and Minkowski sumsets like $|S+S|$? Cauchy-Davenport, Vosper, Plünnecke-Ruzsa, Freiman-Ruzsa, ...

Local properties. Do S or G contain (monochromatic) k-term arithmetic progressions $(x, x+d, x+2 d, \ldots, x+(k-1) d)$, Schur triples $(x+y=z)$, repeated sums $(x+y=u+v)$? Schur, van der Waerden, Rado, Szémeredi, arithmetic regularity, Green-Tao, ...

We will focus on the latter, in particular on the Rado Multiplicity Problem!

Additive Combinatorics 101

Let G be a finite (abelian) group of order N or an interval $[N] \stackrel{\text { def }}{=}\{1, \ldots, N\} \subset \mathbb{N}$.

> What can we say about the (linear) structure of subsets $S \subseteq G$ or colorings $\gamma: G \rightarrow[c]$?

Global properties. What can we say about the relation of $|S|$ and Minkowski sumsets like $|S+S|$? Cauchy-Davenport, Vosper, Plünnecke-Ruzsa, Freiman-Ruzsa, ...

Local properties. Do S or G contain (monochromatic) k-term arithmetic
progressions $(x, x+d, x+2 d, \ldots, x+(k-1) d)$, Schur triples $(x+y=z)$, repeated
sums $(x+y=u+v)$? Schur, van der Waerden, Rado, Szémeredi, arithmetic regularity, Green-Tao,

We will focus on the latter, in particular on the Rado Multiplicity Problem!

Additive Combinatorics 101

Let G be a finite (abelian) group of order N or an interval $[N] \stackrel{\text { def }}{=}\{1, \ldots, N\} \subset \mathbb{N}$.

> What can we say about the (linear) structure of subsets $S \subseteq G$ or colorings $\gamma: G \rightarrow[c]$?

Global properties. What can we say about the relation of $|S|$ and Minkowski sumsets like $|S+S|$? Cauchy-Davenport, Vosper, Plünnecke-Ruzsa, Freiman-Ruzsa, ...

Local properties. Do S or G contain (monochromatic) k-term arithmetic progressions $(x, x+d, x+2 d, \ldots, x+(k-1) d)$, Schur triples $(x+y=z)$, repeated sums $(x+y=u+v)$? Schur, van der Waerden, Rado, Szémeredi, arithmetic regularity, Green-Tao, ...

We will focus on the latter, in particular on the Rado Multiplicity Problem!

The Rado Multiplicity problem

Given a coloring $\gamma: G \rightarrow[c]$ and linear map $L: G^{m} \rightarrow G^{n}$, we are interested in

$$
\begin{equation*}
\mathcal{S}_{L}(\gamma, G) \stackrel{\text { def }}{=}\left\{\mathbf{s} \in G^{m}: L(\mathbf{s})=\mathbf{0}, s_{i} \neq s_{j} \text { for } i \neq j, \mathbf{s} \in \gamma^{-1}(\{i\})^{m} \text { for some } i\right\} \tag{1}
\end{equation*}
$$

Let $\Gamma_{c}(G)$ denotes all c-colorings of G. The Rado Multiplicity Problem is

$$
m_{q, c}(L, G) \stackrel{\text { def }}{=} \min _{\gamma \in \Gamma_{c}(G)}\left|\mathcal{S}_{L}(\gamma, G)\right| /\left|\mathcal{S}_{L}(G)\right|
$$

and in particular $m_{q, c}(L) \stackrel{\text { def }}{=} \lim \sup _{n \rightarrow \infty} m_{q, c}\left(L, G_{n}\right)$ when $G_{n}=[n], \mathbb{Z}_{n}, \mathbb{F}_{q}^{n}$.
Rado (1933) tells us that $\mathcal{S}_{L}\left(\gamma, G_{n}\right) \neq \emptyset$ if L satisfies column condition and n is large, which can also be shown to imply $0<m_{q, c}(L)<1$.

The Rado Multiplicity problem

Given a coloring $\gamma: G \rightarrow[c]$ and linear map $L: G^{m} \rightarrow G^{n}$, we are interested in

$$
\begin{equation*}
\mathcal{S}_{L}(\gamma, G) \stackrel{\text { def }}{=}\left\{\mathbf{s} \in G^{m}: L(\mathbf{s})=\mathbf{0}, s_{i} \neq s_{j} \text { for } i \neq j, \mathbf{s} \in \gamma^{-1}(\{i\})^{m} \text { for some } i\right\} \tag{1}
\end{equation*}
$$

Let $\Gamma_{c}(G)$ denotes all c-colorings of G. The Rado Multiplicity Problem is

$$
m_{q, c}(L, G) \stackrel{\text { def }}{=} \min _{\gamma \in \Gamma_{c}(G)}\left|\mathcal{S}_{L}(\gamma, G)\right| /\left|\mathcal{S}_{L}(G)\right|
$$

and in particular $m_{q, c}(L) \stackrel{\text { def }}{=} \lim \sup _{n \rightarrow \infty} m_{q, c}\left(L, G_{n}\right)$ when $G_{n}=[n], \mathbb{Z}_{n}, \mathbb{F}_{q}^{n}$.
Rado (1933) tells us that $\mathcal{S}_{L}\left(\gamma, G_{n}\right) \neq \emptyset$ if L satisfies column condition and n is large, which can also be shown to imply $0<m_{q, c}(L)<1$.

History of the problem

- Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n], later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.
- Cameron et al. (2007) showed that the nr. of solutions for linear equations with an odd nr . of variables only depends on cardinalities of the two color classes.
- Parrilo, Robertson and Saracino (2008) established bounds for the minimum number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in \mathbb{N}).
- For $r=1$ and m even, Saad and Wolf (2017) showed that any 'pair-partitionable' L gets its multiplicity from uniform random colorings of \mathbb{F}_{q}^{n}. Fox, Pham, and Zhao (2021) showed that this is necessary and Versteegen (2023) further generalized it.
- Kamčev et al. (2021) characterized some L in \mathbb{F}_{q}^{n} with $r>1$ where the multiplicity does not come from random constructions.
- Král et al. (2022) characterized L where the mulitplicty comes from random constructions for $q=2, r=2, m$ odd.

History of the problem

- Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n], later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.
- Cameron et al. (2007) showed that the nr. of solutions for linear equations with an odd nr. of variables only depends on cardinalities of the two color classes.
- Parrilo, Robertson and Saracino (2008) established bounds for the minimum number of monochromatic 3-APs in 2-colorings of $[n]$ (not 2-common in \mathbb{N}).
- For $r=1$ and m even, Saad and Wolf (2017) showed that any 'pair-partitionable' L gets its multiplicity from uniform random colorings of \mathbb{F}_{q}^{n}. Fox, Pham, and Zhao (2021) showed that this is necessary and Versteegen (2023) further generalized it.
- Kamčev et al. (2021) characterized some L in \mathbb{F}_{q}^{n} with $r>1$ where the multiplicity does not come from random constructions.
- Král et al. (2022) characterized L where the mulitplicty comes from random constructions for $q=2, r=2, m$ odd.

Our results

We are interested in particular L and \mathbb{F}_{q}^{n}.
Theorem (Rué and S., 2023)
We have $1 / 10<m_{q=5, c=2}\left(L_{4-\mathrm{AP}}\right) \leq 0.1 \overline{031746}$.
Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial I.b. known.

Proposition (Rué and S., 2023)
We have $m_{q=3, c=3}\left(L_{3-A P}\right)=1 / 27$.
Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

Both upper and lower bounds are computational in nature:

Upper bounds through blowup constructions of particular finite colorings. Discrete and Comb. Optimization

Lower bounds by extending Razborov's Flag Algebra framework. Conic Optimization, Sum-of-Squares, and Semidefinite Programming

Our results

We are interested in particular L and \mathbb{F}_{q}^{n}.
Theorem (Rué and S., 2023)
We have $1 / 10<m_{q=5, c=2}\left(L_{4-A P}\right) \leq 0.1 \overline{031746}$.
Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial I.b. known.

Proposition (Rué and S., 2023)
We have $m_{q=3, c=3}\left(L_{3-A P}\right)=1 / 27$.
Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

Both upper and lower bounds are computational in nature:

Upper bounds through blowup constructions of particular finite colorings. Discrete and Comb. Optimization

Lower bounds by extending Razborov's Flag Algebra framework. Conic Optimization, Sum-of-Squares, and Semidefinite Programming

1. Additive Combinatorics

2. Constructive upper bounds through blow-ups
3. Double counting on steroids
4. Conclusion
5. Constructive upper bounds through blow-ups

How to blow up colorings

What do we need for upper bounds? Sequences of colorings of increasing size... How can we turn this into a finite problem? By considering blowups:

Relevant in other contexts, e.g., Turán and Ramsey theory, capset problem, Sunflower conjecture, Turán's (3,4)-conjecture, the Shannon Capacity of odd cycles...

Lemma

The limit of the density of monochromatic structures in the blow-up sequence is the non-injective density of monochromatic structures in the base coloring.
2. Constructive upper bounds through blow-ups

How to blow up colorings

What do we need for upper bounds? Sequences of colorings of increasing size... How can we turn this into a finite problem? By considering blowups:

Relevant in other contexts, e.g., Turán and Ramsey theory, capset problem, Sunflower conjecture, Turán's $(3,4)$-conjecture, the Shannon Capacity of odd cycles...

Lemma

The limit of the density of monochromatic structures in the blow-up sequence is the non-injective density of monochromatic structures in the base coloring.
2. Constructive upper bounds through blow-ups How to blow up colorings

Sometimes we have a free element $*$ in which we can iterate the blowup-construction:

You can find constructions to blow up using your favorite Discrete Optimization technique:

isomorphism-free generation, SAT-solver, Integer Linear Programming, Bounded Tree Searches, Search Heuristics (Simmulated Annealing, Tabu Search, Genetic algorithms), even Machine Learning,

How to blow up colorings

Sometimes we have a free element $*$ in which we can iterate the blowup-construction:

You can find constructions to blow up using your favorite Discrete Optimization technique:
isomorphism-free generation, SAT-solver, Integer Linear Programming, Bounded Tree Searches, Search Heuristics (Simmulated Annealing, Tabu Search, Genetic algorithms), even Machine Learning, ...
2. Constructive upper bounds through blow-ups

Proofs of the upper bounds

Upper bound of the Theorem

 $m_{3,3}\left(L_{4-\mathrm{AP}}\right) \leq 1 / 27$ follows from the blow-up of this 3-coloring of \mathbb{F}_{3}^{3} :

Upper bound of the Proposition $m_{5,2}\left(L_{4-\mathrm{AP}}\right) \leq 13 / 126$ follows from the iterated blow-up of this 2-coloring of \mathbb{F}_{5}^{3} :

1. Additive Combinatorics

2. Constructive upper bounds through blow-ups

3 slides
3. Double counting on steroids 5 slides
4. Conclusion
3. Double counting on steroids

An improvement on a trivial lower bound

The parameter $s_{L}(\gamma) \stackrel{\text { def }}{=}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right|$ satisfies the averaging equality

$$
\begin{equation*}
s_{L}(\gamma)=\sum_{\delta \in \Gamma(k)} p(\delta, \gamma) s_{L}(\delta)+o(1)=\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta)+o(1) \tag{2}
\end{equation*}
$$

once k is large enough. This implies an immediate trivial lower bound of

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta) \tag{3}
\end{equation*}
$$

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} a_{\delta}=o(1)$, we would get

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta)-a_{\delta} \tag{4}
\end{equation*}
$$

But how would we find such a_{δ} ? Flag Algebras and Semidefinite Programming!
3. Double counting on steroids

An improvement on a trivial lower bound

The parameter $s_{L}(\gamma) \stackrel{\text { def }}{=}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right|$ satisfies the averaging equality

$$
\begin{equation*}
s_{L}(\gamma)=\sum_{\delta \in \Gamma(k)} p(\delta, \gamma) s_{L}(\delta)+o(1)=\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta)+o(1) \tag{2}
\end{equation*}
$$

once k is large enough. This implies an immediate trivial lower bound of

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta) \tag{3}
\end{equation*}
$$

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} a_{\delta}=o(1)$, we would get

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta)-a_{\delta} \tag{4}
\end{equation*}
$$

But how would we find such a_{δ} ? Flag Algebras and Semidefinite Programming!

An improvement on a trivial lower bound

The parameter $s_{L}(\gamma) \stackrel{\text { def }}{=}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right|$ satisfies the averaging equality

$$
\begin{equation*}
s_{L}(\gamma)=\sum_{\delta \in \Gamma(k)} p(\delta, \gamma) s_{L}(\delta)+o(1)=\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta)+o(1) \tag{2}
\end{equation*}
$$

once k is large enough. This implies an immediate trivial lower bound of

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta) \tag{3}
\end{equation*}
$$

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} a_{\delta}=o(1)$, we would get

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta)-a_{\delta} \tag{4}
\end{equation*}
$$

But how would we find such a_{δ} ? Flag Algebras and Semidefinite Programming!

An improvement on a trivial lower bound

The parameter $s_{L}(\gamma) \stackrel{\text { def }}{=}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right|$ satisfies the averaging equality

$$
\begin{equation*}
s_{L}(\gamma)=\sum_{\delta \in \Gamma(k)} p(\delta, \gamma) s_{L}(\delta)+o(1)=\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta)+o(1) \tag{2}
\end{equation*}
$$

once k is large enough. This implies an immediate trivial lower bound of

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta) \tag{3}
\end{equation*}
$$

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} a_{\delta}=o(1)$, we would get

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta)-a_{\delta} \tag{4}
\end{equation*}
$$

But how would we find such a_{δ} ? Flag Algebras and Semidefinite Programming!

3. Double counting on steroids

SOS please someone help me

Definition

The flag algebra \mathcal{A} is given by considering linear combinations of colorings, factoring out relations given by the averaging equality and defining an appropriate product.

The semantic cone $\mathcal{S}=\left\{f \in \mathcal{A}: \phi(f) \geq 0\right.$ for all $\left.\phi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})\right\}$ captures those algebraic expressions corresponding to density expressions that are 'true'.

There exists an element $C_{L} \in \mathcal{A}$ capturing the behavior of S_{L}, so we can establish a lower bound by establishing an SOS expression

The $p\left(\sum_{i=1}^{k} f_{i}^{2}, \delta\right)$ correspond to the a_{δ} on the previous slide!

3. Double counting on steroids

SOS please someone help me

Definition

The flag algebra \mathcal{A} is given by considering linear combinations of colorings, factoring out relations given by the averaging equality and defining an appropriate product.

The semantic cone $\mathcal{S}=\left\{f \in \mathcal{A}: \phi(f) \geq 0\right.$ for all $\left.\phi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})\right\}$ captures those algebraic expressions corresponding to density expressions that are 'true'.

There exists an element $C_{L} \in \mathcal{A}$ capturing the behavior of s_{L}, so we can establish a lower bound by establishing an SOS expression

$$
\begin{equation*}
C_{L}-\lambda-\sum_{i=1}^{k} f_{i}^{2} \in \mathcal{S} \tag{5}
\end{equation*}
$$

The $p\left(\sum_{i=1}^{k} f_{i}^{2}, \delta\right)$ correspond to the a_{δ} on the previous slide!

Challenges

1. Need an appropriate notion of density, isomorphism, and 'partially fixed coloring' both to (i) handle invariance and non-invariance and (ii) define different algebras.
2. Solutions as defined previously do not satisfy an exact averaging equality. \rightarrow Introduce fully dimensional solutions, which asympt. make up all solutions.
3. Need to adequately solve isomorphisms problem from a practical perspective. \rightarrow Represent structure as graph and use nauty.
4. (Almost) all SDP solvers work numerically, but we need algebraic expressions. \rightarrow Refine solution an using exact LP solver like SoPlex.
5. Double counting on steroids

Lower bound of the Proposition

$m_{5,2}\left(L_{4-\mathrm{AP}}\right)>1 / 10$ follows by verifying that over all 33242 -colorings of \mathbb{F}_{5}^{2} we have

$$
\begin{aligned}
& F_{1}+F_{4}+\left(F_{2}+F_{3}\right) / 5-1 / 10 \geq \sum_{i=1}^{2}\left(9 / 10 \cdot \llbracket\left(F_{i, 1}+\left(5 F_{i, 2}-5 F_{i, 3}-10 F_{i, 4}\right) / 27\right)^{2} \rrbracket_{-1}\right. \\
&\left.\ldots+61 / 162 \cdot \llbracket\left(\left(F_{i, 3}-F_{i, 2}\right) / 2+F_{i, 4}\right)^{2} \rrbracket_{-1}\right),
\end{aligned}
$$

and by noting that $F_{1,1}+F_{2,1}>0$. Here the relevant flags F_{i} and $F_{i, j}$ are

Flags of type \varnothing

Flags of type \square

$F_{1,4} \quad \square \square \square \square \square$

Flags of type

3. Double counting on steroids

Lower bound of the Theorem

$m_{3,3}\left(L_{3-\mathrm{AP}}\right) \geq 1 / 27$ follows by verifying that over all all 140 3-colorings of \mathbb{F}_{3}^{2} we have

$$
\begin{aligned}
F_{i}-1 / 27 \geq & 26 / 27 \cdot \llbracket\left(F_{i, 1}-99 / 182 F_{i, 2}+75 / 208 F_{i, 3}-11 / 28 F_{i, 4}-3 / 26 F_{i, 5}\right)^{2} \rrbracket_{-1} \\
& \ldots+1685 / 1911 \cdot \llbracket\left(F_{i, 2}-231 / 26960 F_{i, 3}+1703 / 6740 F_{i, 4}-1869 / 3370 F_{i, 5}\right)^{2} \rrbracket_{-1} \\
& \ldots+71779 / 431360 \cdot \llbracket\left(F_{i, 3}-358196 / 502453 F_{i, 4}-412904 / 502453 F_{i, 5}\right)^{2} \rrbracket_{-1} \\
& \ldots+5431408 / 10551513 \cdot \llbracket\left(F_{i, 4}-1 / 4 F_{i, 5}\right)^{2} \rrbracket_{-1}
\end{aligned}
$$

for any $i \in\{1,2,3\}$. Here the relevant flags F_{i} and $F_{i, j}$ are

| Flags of type \varnothing | Flags of type \square | Flags of type \square | Flags of type \square |
| :--- | :--- | :--- | :--- | :--- |
| $F_{1} \square \square \square$ | $F_{1,1} \square \square \square$ | $F_{2,1} \square \square \square$ | $F_{3,1} \square \square \square$ |
| $F_{2} \square \square \square$ | $F_{1,2} \square \square \square$ | $F_{2,2} \square \square \square$ | $F_{3,2} \square \square \square$ |
| $F_{3} \square \square \square$ | $F_{1,3} \square \square \square$ | $F_{2,3} \square \square \square$ | $F_{3,3} \square \square \square$ |
| | $F_{1,4} \square \square \square$ | $F_{2,4} \square \square \square$ | $F_{3,4} \square \square \square$ |
| | $F_{1,5} \square \square \square$ | $F_{2,5} \square \square \square$ | $F_{3,5} \square \square \square$ |

1. Additive Combinatorics

2. Constructive upper bounds through blow-ups

3 slides
3. Double counting on steroids
4. Conclusion

1 slide

Open problems and final remarks

- Often one can extract stability results from Flag Algebra certificates.
- Steep computational hurdle: underlying structures grow exponentially (instead of quadratically for graphs or cubic for 3-uniform hypergraphs)
- No neat notion of subspaces makes generalizing to other groups difficult.

Code is available at github.com/FordUniver/rs_radomult_23

Thank you for your attention!

