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1. Additive Combinatorics 4 slides
Additive Combinatorics 101

Let G be a finite (abelian) group of order N or an interval [N] def= {1, . . . , N} ⊂ N.

What can we say about the (linear) structure
of subsets S ⊆ G or colorings γ : G → [c]?

Global properties. What can we say about the relation of |S| and Minkowski
sumsets like |S + S|? Cauchy–Davenport, Vosper, Plünnecke–Ruzsa, Freiman-Ruzsa, ...

Local properties. Do S or G contain (monochromatic) k-term arithmetic
progressions (x , x + d , x + 2 d , . . . , x + (k − 1) d), Schur triples (x + y = z), repeated
sums (x + y = u + v)? Schur, van der Waerden, Rado, Szémeredi, arithmetic
regularity, Green-Tao, ...

We will focus on the latter, in particular on the Rado Multiplicity Problem!
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The Rado Multiplicity problem

Given a coloring γ : G → [c] and linear map L : Gm → Gn, we are interested in
SL(γ, G) def= {s ∈ Gm : L(s) = 0, si ̸= sj for i ̸= j , s ∈ γ−1({i})m for some i}. (1)

Let Γc(G) denotes all c-colorings of G . The Rado Multiplicity Problem is

mq,c(L, G) def= min
γ∈Γc(G)

|SL(γ, G)| / |SL(G)|

and in particular mq,c(L) def= lim supn→∞ mq,c(L, Gn) when Gn = [n],Zn,Fn
q.

Rado (1933) tells us that SL(γ, Gn) ̸= ∅ if L satisfies column condition and n is large,
which can also be shown to imply 0 < mq,c(L) < 1.
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History of the problem

• Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n],
later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.

• Cameron et al. (2007) showed that the nr. of solutions for linear equations with
an odd nr. of variables only depends on cardinalities of the two color classes.

• Parrilo, Robertson and Saracino (2008) established bounds for the minimum
number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in N).

• For r = 1 and m even, Saad and Wolf (2017) showed that any ‘pair-partitionable’
L gets its multiplicity from uniform random colorings of Fn

q. Fox, Pham, and Zhao
(2021) showed that this is necessary and Versteegen (2023) further generalized it.

• Kamčev et al. (2021) characterized some L in Fn
q with r > 1 where the

multiplicity does not come from random constructions.
• Král et al. (2022) characterized L where the mulitplicty comes from random

constructions for q = 2, r = 2, m odd.
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Our results

We are interested in particular L and Fn
q.

Theorem (Rué and S., 2023)

We have 1/10 < mq=5,c=2(L4-AP) ≤ 0.1031746.

Saad and Wolf (2017) previously established an u.b.
of 0.1247 with no no-trivial l.b. known.

Proposition (Rué and S., 2023)

We have mq=3,c=3(L3-AP) = 1/27.

Similar to Cummings et al. (2013) extending a re-
sult of Goodman (1959) about triangles.

Both upper and lower bounds are
computational in nature:
Upper bounds through blow-
up constructions of particular fi-
nite colorings. Discrete and
Comb. Optimization

Lower bounds by extending
Razborov’s Flag Algebra frame-
work. Conic Optimization,
Sum-of-Squares, and
Semidefinite Programming
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Proposition (Rué and S., 2023)

We have mq=3,c=3(L3-AP) = 1/27.

Similar to Cummings et al. (2013) extending a re-
sult of Goodman (1959) about triangles.

Both upper and lower bounds are
computational in nature:
Upper bounds through blow-
up constructions of particular fi-
nite colorings. Discrete and
Comb. Optimization

Lower bounds by extending
Razborov’s Flag Algebra frame-
work. Conic Optimization,
Sum-of-Squares, and
Semidefinite Programming



Flag Algebras in Additive Combinatorics

1. Additive Combinatorics 4 slides

2. Constructive upper bounds through blow-ups 3 slides

3. Double counting on steroids 5 slides

4. Conclusion 1 slide



2. Constructive upper bounds through blow-ups 3 slides
How to blow up colorings

What do we need for upper bounds? Sequences of colorings of increasing size...
How can we turn this into a finite problem? By considering blowups:

→ → → ...

Relevant in other contexts, e.g., Turán and Ramsey theory, capset problem, Sunflower
conjecture, Turán’s (3, 4)-conjecture, the Shannon Capacity of odd cycles...

Lemma
The limit of the density of monochromatic structures in the blow-up sequence is the
non-injective density of monochromatic structures in the base coloring.
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How to blow up colorings

Sometimes we have a free element ∗ in which we can iterate the blowup-construction:

∗ →
∗

→
∗

→ ...

You can find constructions to blow up using your
favorite Discrete Optimization technique:

isomorphism-free generation, SAT-solver, Integer Linear Programming, Bounded
Tree Searches, Search Heuristics (Simmulated Annealing, Tabu Search,

Genetic algorithms), even Machine Learning, ...
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2. Constructive upper bounds through blow-ups 3 slides
Proofs of the upper bounds

Upper bound of the Theorem
m3,3(L4-AP) ≤ 1/27 follows from the blow-up of this 3-coloring of F3

3:

Upper bound of the Proposition
m5,2(L4-AP) ≤ 13/126 follows from the iterated blow-up of this 2-coloring of F3

5:
∗
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3. Double counting on steroids 5 slides
An improvement on a trivial lower bound

The parameter sL(γ) def= |SL(γ)| / |SL(Fn
q)| satisfies the averaging equality

sL(γ) =
∑

δ∈Γ(k)
p(δ, γ) sL(δ) + o(1) = E(γ)

δ∈Γ(k)sL(δ) + o(1) (2)

once k is large enough. This implies an immediate trivial lower bound of

mq,c(L) ≥ min
δ∈Γ(k)

sL(δ). (3)

If we magically found some coefficients aδ satisfying E(γ)
δ∈Γ(k)aδ = o(1), we would get

mq,c(L) ≥ min
δ∈Γ(k)

sL(δ) − aδ. (4)

But how would we find such aδ? Flag Algebras and Semidefinite Programming!
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3. Double counting on steroids 5 slides
SOS please someone help me

Definition
The flag algebra A is given by considering linear combinations of colorings, factoring
out relations given by the averaging equality and defining an appropriate product.

The semantic cone S = {f ∈ A : ϕ(f ) ≥ 0 for all ϕ ∈ Hom+(A,R)} captures those
algebraic expressions corresponding to density expressions that are ‘true’.
There exists an element CL ∈ A capturing the behavior of sL, so we can establish a
lower bound by establishing an SOS expression

CL − λ −
k∑

i=1
f 2
i ∈ S. (5)

The p(∑k
i=1 f 2

i , δ) correspond to the aδ on the previous slide!
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Challenges

1. Need an appropriate notion of density, isomorphism, and ‘partially fixed coloring’
both to (i) handle invariance and non-invariance and (ii) define different algebras.

2. Solutions as defined previously do not satisfy an exact averaging equality.
→ Introduce fully dimensional solutions, which asympt. make up all solutions.

3. Need to adequately solve isomorphisms problem from a practical perspective.
→ Represent structure as graph and use nauty.

4. (Almost) all SDP solvers work numerically, but we need algebraic expressions.
→ Refine solution an using exact LP solver like SoPlex.
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Lower bound of the Proposition

m5,2(L4-AP) > 1/10 follows by verifying that over all 3324 2-colorings of F2
5 we have

F1 + F4 + (F2 + F3)/5 − 1/10 ≥
2∑

i=1

(
9/10 ·

q(
Fi ,1 + (5 Fi ,2 − 5 Fi ,3 − 10 Fi ,4)/27

)2y
−1

. . . + 61/162 ·
q(

(Fi ,3 − Fi ,2)/2 + Fi ,4
)2y

−1

)
,

and by noting that F1,1 + F2,1 > 0. Here the relevant flags Fi and Fi ,j are

Flags of type ∅

F1

F2

F3

F4

Flags of type

F1,1

F1,2

F1,3

F1,4

Flags of type

F2,1

F2,2

F2,3

F2,4
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Lower bound of the Theorem

m3,3(L3-AP) ≥ 1/27 follows by verifying that over all all 140 3-colorings of F2
3 we have

Fi − 1/27 ≥ 26/27 ·
q(

Fi ,1 − 99/182 Fi ,2 + 75/208 Fi ,3 − 11/28 Fi ,4 − 3/26 Fi ,5
)2y

−1

. . . + 1685/1911 ·
q(

Fi ,2 − 231/26960 Fi ,3 + 1703/6740 Fi ,4 − 1869/3370 Fi ,5
)2y

−1

. . . + 71779/431360 ·
q(

Fi ,3 − 358196/502453 Fi ,4 − 412904/502453 Fi ,5
)2y

−1

. . . + 5431408/10551513 ·
q(

Fi ,4 − 1/4 Fi ,5
)2y

−1

for any i ∈ {1, 2, 3}. Here the relevant flags Fi and Fi ,j are
Flags of type ∅

F1

F2

F3

Flags of type

F1,1

F1,2

F1,3

F1,4

F1,5

Flags of type

F2,1

F2,2

F2,3

F2,4

F2,5

Flags of type

F3,1

F3,2

F3,3

F3,4

F3,5
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4. Conclusion 1 slide
Open problems and final remarks

• Often one can extract stability results from Flag Algebra certificates.

• Steep computational hurdle: underlying structures grow exponentially (instead of
quadratically for graphs or cubic for 3-uniform hypergraphs)

• No neat notion of subspaces makes generalizing to other groups difficult.

Code is available at github.com/FordUniver/rs_radomult_23

github.com/FordUniver/rs_radomult_23


Thank you for your attention!
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