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A #{(xy) e Z i1y <) =12 L E()

Theorem (Huxley 2003)
We have E(r) = O(r'31/208),

Theorem (Hardy 1915; Landau 1915)
We cannot have E(r) = o(r'/? log(r)'/4).
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Definition
For any infinite set A C Ny and n € Ny, let
ra(n) = #{(a1,a) € A* 1oy +a, = n}. (1)

Remark
Trivially v o(n) is odd if n = 2a for some a € A and even otherwise.

Theorem (Erd6s and Fuchs 1956)

For any infinite A C N and ¢ > 0 we cannot have
N
Zm(n) = cN +o(N'* log N=1/2). )
n=1

Corollary

Considering the case where A = {m* : m € N}, c = w/4and N = 1> — 4r/T,
it follows that we cannot have E(r) = o(r'/? log(r)~1/2).
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Additive representation functions

Theorem (Moser 1962)
For any k > 2 there exists A C Ng such that r 4(n; 1,k, k%, ... k1) =1

Theorem (Rué and Cilleruelo 2009)

Forany ky,ky > 2 and A C Ny, 7 4(n; k1, kz) cannot become constant.

Theorem (Rué and S. 2018+)

If there are pairwise co-prime integers qu, ..., qmu > 2 such that
ki =gy g™ > 2 3)
where b(i,j) € {0,1}, then r 4(n; k1, ..., ks) cannot become constant for any

infinite A C Ny. This includes the case of pairwise co-prime ki, ... kg > 2.



PROOF

The proof of Moser’s result

Theorem (Moser 1962)
For any k > 2 there exists A C Ny such that r 4(n;1,k) =1 forall n > 0.



PROOF

The proof of Moser’s result

Theorem (Moser 1962)
For any k > 2 there exists A C Ny such that r 4(n;1,k) =1 forall n > 0.

Proof.
The generating function of Ais fu(z) = D ,c 42"



PROOF

The proof of Moser’s result

Theorem (Moser 1962)
For any k > 2 there exists A C Ny such that r 4(n;1,k) =1 forall n > 0.

Proof.
The generating function of Ais fu(z) = ) _,c 4 z"- We have

(oo} oo

f_A(Z)f.A(Zk) _ Z Za+ktl’ _ Z n: 1, k n L Z

(a,a')€A? n=0 n=0

(4)



PROOF

The proof of Moser’s result

Theorem (Moser 1962)
For any k > 2 there exists A C Ny such that r 4(n;1,k) =1 forall n > 0.

Proof.
The generating function of Ais fu(z) = ) _,c 4 z"- We have

:Zz”k"/:i (n;1,k) z ;i (4)
(a,a’)€A2 n=0 n=0

Writing f4(z) = (1 —z)~'f ;' (z") and repeatedly substituting,



PROOF

The proof of Moser’s result

Theorem (Moser 1962)
For any k > 2 there exists A C Ny such that r 4(n;1,k) =1 forall n > 0.

Proof.
The generating function of Ais fu(z) = ) _,c 4 z"- We have

fa@fa@) = S 2 =N rm k2 =Y 2 (4)
(a,a’)€A2 n=0 n=0

Writing f4(z) = (1 — z)~'f ;' (z") and repeatedly substituting, we get

=11 (1 LY 2w +Z<k—1>(k2>’) .
j=0
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The proof of Moser’s result

Theorem (Moser 1962)
For any k > 2 there exists A C Ny such that r 4(n;1,k) =1 forall n > 0.

Proof.
The generating function of Ais fu(z) = ) _,c 4 z"- We have

fa@fa@) = > 2 =N "1k =Y 2 = @)
(a,a')€A? n=0 n=0

Writing f4(z) = (1 — z)~'f ;' (z") and repeatedly substituting, we get
=11 (1 LY 2w +Z<k—1>(k2>’) .
j=0

This is the representation function of the set of all integers whose
k?-ary representation has only digits strictly smaller than k. O
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Proof Outline.
From here on we will abbreviate r 4 (1) = r4(n; k1, ..., kg).
Generalising the previous approach, we have

fal@)- - fa@y = Y et +kd”d—2u : (5)

If 7 4 (n) becomes constant, that is there exist ¢ > 0 and 1y > 0 such that
ra(n) =cforn > ny > 0, then

0o np—1 o . ,
;rA(n)Zn;r‘A(n)Zn+n_ZnOCZ”Q(Z)+Clz_Z1(_2)2 (6)

where Q € Ny[z] and P € Z[z] are polynomials and P(1) # 0. We have

Fal) - fuld) = 1L 7)
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Introducing cyclotomic poylinomials

The cyclotomic polynomial of order n is given by

®i(2) = [[(z-¢) 8)

£E¢H
where ¢, = {¢ € C: ¢F =1iffk =0 mod n}. We have

(i) ®, € Z[z] for all n and

(ii) @, isirreducible over Z|[z].

Recall that f4(z") - - - f4(z") = P(z)/(1 — z) for some P(z) € Z|[z] satisfy-
ing P(1) # 0. Now, for any n there exists a unique s, € Ny s.t.

Py(z) = P(z) ®,™(2) ©)

satisfies P, (z) € Z[z] as well as P, (§) # 0 for any £ € ¢,.
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Factoring out the generating function

If 7 4(n) becomes constant for some A C Ny, then
P(z)

fa(@) - fa(@) = 7= where P(1) #£0 (7)
and there exist s,, € Ny such that
P, (z) = P(z) &, (z) satisfies P,(§) # 0 for £ € ¢,. )
Proposition

Forany (j1, .. .,ja) € N§ there exist r; satisfying
Jim f) - 07, (w6) ¢ {0, 00} (10)
forany & € ¢, i, These exponents satisfy ro = —1/d and
1 d

F(j0b(1,1), .., sob@1)) + - T TGiebm), .., jjob@my) = dsj  (11)

forall j € Nj \ {0} wherea © b = max(a — b,0) and s; = St
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Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have d = 2. The
proposition gives the existence of {rj : j € N3} satisfying

@) 70 =-1/2,

(1) 7(+1,0) = S(+1,0) — 7(.0)s
(iii) 7‘(0_’]'_;,_1) = S(O,]‘—H) — 1’(0’]‘) and

(V) TGi+10) + FGjp+1) = S(i+1,j2+1)-

Inductively, as s, € Ny, we have r, ¢ Z and therefore r, # 0 due to (i).
As P is a polynomial there exists /g such that s;, j, = 0if j1 +j» > fo.
Assume w.l.o.g. that {; is odd. Now

> T(ty+1,0) = —T(4,,0) due to (id),
> 7(0,60+1) = —T(0,¢) due to (iii),
> T(60,0) = 7(0,60) a0 T(gy11,0) = —T(0,60+1) due to (iv)

implying the contradiction 74, 0) = 7(0,¢,) = "(6y+1,0) = "(0,60+1) = 0. [



REMARKS

Remarks and Open Problems

Conjecture

The cases covered by Moser, that is 1,k,k2, ..., k"1, are the only ones for
which r 4(n) can become constant.

1. What about cases not covered by our result, e.g. r4(1;2,3,4) or
T’_A(l, 2; 6)?

2. What about the unordered variant

Ra(nmsky, ... .ky) = #{{a1,... a5y € 2 hyay + -+ + kgag = n}?

3. What about an Erdés-Fuchs-type result for ky = 2 and k, = 3?
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Thank you for your attention!



	Introduction
	Result
	Proof
	Remarks

