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INTRODUCTION RESULT PROOF REMARKS

Some general Motivation: Gauss’ Circle Problem

Q: How many integer lattice points
are in a circle with radius r centred
at the origin?

Theorem (Huxley 2003)
We have E(r) = O(r131/208).

Theorem (Hardy 1915; Landau 1915)
We cannot have E(r) = o(r1/2 log(r)1/4).
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INTRODUCTION RESULT PROOF REMARKS

Additive representation functions

Definition
For any infinite set A ⊆ N0 and n ∈ N0, let

rA(n) = #
{

(a1, a2) ∈ A2 : a1 + a2 = n
}
. (1)

Remark
Trivially rA(n) is odd if n = 2a for some a ∈ A and even otherwise.

Theorem (Erdős and Fuchs 1956)
For any infinite A ⊆ N and c > 0 we cannot have

N∑
n=1

rA(n) = cN + o
(
N1/4 log N−1/2). (2)

Corollary
Considering the case where A = {m2 : m ∈ N}, c = π/4 and N = r2 − 4r/π,
it follows that we cannot have E(r) = o

(
r1/2 log(r)−1/2

)
.
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INTRODUCTION RESULT PROOF REMARKS

Additive representation functions

Sárközy and Sós ’97: For which k1, . . . , kd ∈ N does there exist an
infinite set A ⊆ N0 and n0 ≥ 0 such that

rA(n; k1, . . . , kd) = #
{

(a1, . . . , ad) ∈ Ad : k1 a1 + · · ·+ kd ad = n
}

is constant for n ≥ n0?

Remark
We already observed that rA(n; 1, 1) cannot become constant. We can extend
this to rA(n; 1, . . . , 1).

Theorem (Moser 1962)
For any k ≥ 2 there exists A ⊆ N0 such that rA(n; 1, k, k2, . . . , kd−1) = 1.

Theorem (Rué and Cilleruelo 2009)
For any k1, k2 ≥ 2 and A ⊆ N0, rA(n; k1, k2) cannot become constant.
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The proof of Moser’s result

Theorem (Moser 1962)
For any k ≥ 2 there exists A ⊆ N0 such that rA(n; 1, k) = 1 for all n ≥ 0.

Proof.
The generating function of A is fA(z) =

∑
a∈A za. We have

fA(z) fA(zk) =
∑

(a,a′)∈A2

za+ka′ =
∞∑

n=0

r(n; 1, k) zn !
=
∞∑

n=0

zn =
1

1− z
. (4)

Writing fA(z) = (1− z)−1f−1
A (zk) and repeatedly substituting, we get

fA(z) =

∞∏
j=0

(
1 + z(k2)

j

+ z2(k2)
j

+ · · ·+ +z(k−1)(k2)
j)
.

This is the representation function of the set of all integers whose
k2-ary representation has only digits strictly smaller than k.
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Proof Outline of Main Result

Proof Outline.
From here on we will abbreviate rA(n) = rA(n; k1, . . . , kd).

Generalising the previous approach, we have

fA(zk1) · · · fA(zkd) =
∑

(a1,...,ad)∈Ad

zk1a1+···+kdad =

∞∑
n=0

rA(n) zn. (5)

If rA(n) becomes constant, that is there exist c > 0 and n0 ≥ 0 such that
rA(n) = c for n ≥ n0 ≥ 0, then

∞∑
n=0

rA(n) zn =

n0−1∑
n=0

rA(n) zn +

∞∑
n=n0

c zn = Q(z) + c
zn0

1− z
=

P(z)

1− z
(6)

where Q ∈ N0[z] and P ∈ Z[z] are polynomials and P(1) 6= 0. We have

fA(zk1) · · · fA(zkd) =
P(z)

1− z
. (7)
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Introducing cyclotomic poylinomials

The cyclotomic polynomial of order n is given by

Φn(z) =
∏
ξ∈φn

(z− ξ) (8)

where φn = {ξ ∈ C : ξk = 1 iff k ≡ 0 mod n}.

We have

(i) Φn ∈ Z[z] for all n and

(ii) Φn is irreducible over Z[z].

Recall that fA(zk1) · · · fA(zkd) = P(z)/(1− z) for some P(z) ∈ Z[z] satisfy-
ing P(1) 6= 0. Now, for any n there exists a unique sn ∈ N0 s.t.

Pn(z) = P(z) Φ−sn
n (z) (9)

satisfies Pn(z) ∈ Z[z] as well as Pn(ξ) 6= 0 for any ξ ∈ φn.
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ing P(1) 6= 0. Now, for any n there exists a unique sn ∈ N0 s.t.

Pn(z) = P(z) Φ−sn
n (z) (9)

satisfies Pn(z) ∈ Z[z] as well as Pn(ξ) 6= 0 for any ξ ∈ φn.
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Factor ing out the generating function

If rA(n) becomes constant for some A ⊆ N0, then

fA(zk1) · · · fA(zkd) =
P(z)

1− z
where P(1) 6= 0 (7)

and there exist sn ∈ N0 such that

Pn(z) = P(z) Φ−sn
n (z) satisfies Pn(ξ) 6= 0 for ξ ∈ φn. (9)

Proposition
For any (j1, . . . , jd) ∈ Nd

0 there exist rj satisfying

lim
ω→1

f (ωξ) · Φ−rj

kj1
1 ···k

jd
d

(ωξ) /∈ {0,±∞} (10)

for any ξ ∈ φ
kj1

1 ···k
jd
d

. These exponents satisfy r0 = −1/d and

r(j1	b(1,1), ..., jd	b(d,1)) + · · ·+ r(j1	b(1,m), ..., jd	b(d,m)) = dsj (11)

for all j ∈ Nm
0 \ {0} where a	 b = max(a− b, 0) and sj = s

kj1
1 ···k

jd
d

.
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Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have d = 2.

The
proposition gives the existence of {rj : j ∈ N2

0} satisfying

(i) r(0,0) = −1/2,

(ii) r(j+1,0) = s(j+1,0) − r(j,0),

(iii) r(0,j+1) = s(0,j+1) − r(0,j) and

(iv) r(j1+1,j2) + r(j1,j2+1) = s(j1+1,j2+1).

Inductively, as s? ∈ N0, we have r? /∈ Z and therefore r? 6= 0 due to (i).
As P is a polynomial there exists `0 such that sj1,j2 = 0 if j1 + j2 ≥ `0.
Assume w.l.o.g. that `0 is odd. Now

I r(`0+1,0) = −r(`0,0) due to (ii),

I r(0,`0+1) = −r(0,`0) due to (iii),

I r(`0,0) = r(0,`0) and r(`0+1,0) = −r(0,`0+1) due to (iv)

implying the contradiction r(`0,0) = r(0,`0) = r(`0+1,0) = r(0,`0+1) = 0.
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Consider the case of Rué and Cilleruelo, that is we have d = 2. The
proposition gives the existence of {rj : j ∈ N2

0} satisfying

(i) r(0,0) = −1/2,

(ii) r(j+1,0) = s(j+1,0) − r(j,0),

(iii) r(0,j+1) = s(0,j+1) − r(0,j) and

(iv) r(j1+1,j2) + r(j1,j2+1) = s(j1+1,j2+1).

Inductively, as s? ∈ N0, we have r? /∈ Z and therefore r? 6= 0 due to (i).
As P is a polynomial there exists `0 such that sj1,j2 = 0 if j1 + j2 ≥ `0.
Assume w.l.o.g. that `0 is odd.

Now

I r(`0+1,0) = −r(`0,0) due to (ii),

I r(0,`0+1) = −r(0,`0) due to (iii),

I r(`0,0) = r(0,`0) and r(`0+1,0) = −r(0,`0+1) due to (iv)

implying the contradiction r(`0,0) = r(0,`0) = r(`0+1,0) = r(0,`0+1) = 0.



INTRODUCTION RESULT PROOF REMARKS

Finding a contradiction in the exponents
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Remarks and Open Problems

Conjecture
The cases covered by Moser, that is 1, k, k2, . . . , kd−1, are the only ones for
which rA(n) can become constant.

1. What about cases not covered by our result, e.g. rA(n; 2, 3, 4) or
rA(1, 2, 6)?

2. What about the unordered variant

RA(n; k1, . . . , kd) = #
{
{a1, . . . , ad} ∈ 2A : k1 a1 + · · ·+ kd ad = n

}
?

3. What about an Erdős-Fuchs-type result for k1 = 2 and k2 = 3?
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Thank you for your attention!
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