On a problem of Sárközy and Sós for multivariate linear forms

Juanjo Rué Christoph Spiegel

Discrete Mathematics Days
Sevilla, June 2018
Some general Motivation: Gauss’ Circle Problem

Q: How many integer lattice points are in a circle with radius r centred at the origin?
Q: How many integer lattice points are in a circle with radius r centred at the origin?

A: $\# \{(x, y) \in \mathbb{Z}^2 : x^2 + y^2 \leq r^2\} = \pi r^2 + E(r)$
Some general Motivation: Gauss’ Circle Problem

Q: How many integer lattice points are in a circle with radius \(r \) centred at the origin?

A: \(\# \{ (x, y) \in \mathbb{Z}^2 : x^2 + y^2 \leq r^2 \} = \pi r^2 + E(r) \)

Theorem (Huxley 2003)

We have \(E(r) = O(r^{131/208}) \).
Some general Motivation: Gauss’ Circle Problem

Q: How many integer lattice points are in a circle with radius r centred at the origin?

A: $\#\{(x, y) \in \mathbb{Z}^2 : x^2 + y^2 \leq r^2\} = \pi r^2 + E(r)$

Theorem (Huxley 2003)

We have $E(r) = O(r^{131/208})$.

Theorem (Hardy 1915; Landau 1915)

*We cannot have $E(r) = o(r^{1/2} \log(r)^{1/4})$.***
Additive representation functions

Definition
For any infinite set $\mathcal{A} \subseteq \mathbb{N}_0$ and $n \in \mathbb{N}_0$, let

$$r_\mathcal{A}(n) = \#\{(a_1, a_2) \in \mathcal{A}^2 : a_1 + a_2 = n\}. \quad (1)$$
Additive representation functions

Definition
For any infinite set $\mathcal{A} \subseteq \mathbb{N}_0$ and $n \in \mathbb{N}_0$, let

$$ r_{\mathcal{A}}(n) = \# \{(a_1, a_2) \in \mathcal{A}^2 : a_1 + a_2 = n \}. $$

(1)

Remark
Trivially $r_{\mathcal{A}}(n)$ is odd if $n = 2a$ for some $a \in \mathcal{A}$ and even otherwise.
Additive representation functions

Definition
For any infinite set $\mathcal{A} \subseteq \mathbb{N}_0$ and $n \in \mathbb{N}_0$, let

$$r_\mathcal{A}(n) = \# \{(a_1, a_2) \in \mathcal{A}^2 : a_1 + a_2 = n\}.$$ \hfill \(1\)

Remark
Trivially $r_\mathcal{A}(n)$ is odd if $n = 2a$ for some $a \in \mathcal{A}$ and even otherwise.

Theorem (Erdős and Fuchs 1956)
For any infinite $\mathcal{A} \subseteq \mathbb{N}$ and $c > 0$ we **cannot** have

$$\sum_{n=1}^{N} r_\mathcal{A}(n) = cN + o(N^{1/4} \log N^{-1/2}).$$ \hfill \(2\)
Additive representation functions

Definition
For any infinite set $A \subseteq \mathbb{N}_0$ and $n \in \mathbb{N}_0$, let

$$r_A(n) = \# \{(a_1, a_2) \in A^2 : a_1 + a_2 = n\}. \quad (1)$$

Remark
Trivially $r_A(n)$ is odd if $n = 2a$ for some $a \in A$ and even otherwise.

Theorem (Erdős and Fuchs 1956)
For any infinite $A \subseteq \mathbb{N}$ and $c > 0$ we cannot have

$$\sum_{n=1}^{N} r_A(n) = cN + o(N^{1/4} \log N^{-1/2}). \quad (2)$$

Corollary
Considering the case where $A = \{m^2 : m \in \mathbb{N}\}$, $c = \pi/4$ and $N = r^2 - 4r/\pi$, it follows that we cannot have $E(r) = o(r^{1/2} \log(r)^{-1/2})$.
Additive representation functions

Sárközy and Sós ’97: For which \(k_1, \ldots, k_d \in \mathbb{N} \) does there exist an infinite set \(A \subseteq \mathbb{N}_0 \) and \(n_0 \geq 0 \) such that

\[
r_A(n; k_1, \ldots, k_d) = \# \{(a_1, \ldots, a_d) \in A^d : k_1 a_1 + \cdots + k_d a_d = n \}
\]

is constant for \(n \geq n_0 \)?
Additive representation functions

Sárközy and Sós ’97: For which \(k_1, \ldots, k_d \in \mathbb{N}\) does there exist an infinite set \(A \subseteq \mathbb{N}_0\) and \(n_0 \geq 0\) such that

\[
r_A(n; k_1, \ldots, k_d) = \#\{(a_1, \ldots, a_d) \in A^d : k_1 a_1 + \cdots + k_d a_d = n\}
\]

is constant for \(n \geq n_0\)?

Remark
We already observed that \(r_A(n; 1, 1)\) cannot become constant.
Additive representation functions

Sárközy and Sós ’97: For which $k_1, \ldots, k_d \in \mathbb{N}$ does there exist an infinite set $A \subseteq \mathbb{N}_0$ and $n_0 \geq 0$ such that

$$r_A(n; k_1, \ldots, k_d) = \#\{(a_1, \ldots, a_d) \in A^d : k_1 a_1 + \cdots + k_d a_d = n\}$$

is constant for $n \geq n_0$?

Remark

We already observed that $r_A(n; 1, 1)$ cannot become constant. We can extend this to $r_A(n; 1, \ldots, 1)$.
Additive representation functions

Sárközy and Sós ’97: For which $k_1, \ldots, k_d \in \mathbb{N}$ does there exist an infinite set $A \subseteq \mathbb{N}_0$ and $n_0 \geq 0$ such that

$$r_A(n; k_1, \ldots, k_d) = \# \{(a_1, \ldots, a_d) \in A^d : k_1 a_1 + \cdots + k_d a_d = n\}$$

is constant for $n \geq n_0$?

Remark

We already observed that $r_A(n; 1, 1)$ cannot become constant. We can extend this to $r_A(n; 1, \ldots, 1)$.

Theorem (Moser 1962)

For any $k \geq 2$ there exists $A \subseteq \mathbb{N}_0$ such that $r_A(n; 1, k, k^2, \ldots, k^{d-1}) = 1.$
Additive representation functions

Sárközy and Sós ’97: For which $k_1, \ldots, k_d \in \mathbb{N}$ does there exist an infinite set $A \subseteq \mathbb{N}_0$ and $n_0 \geq 0$ such that

$$r_A(n; k_1, \ldots, k_d) = \# \{(a_1, \ldots, a_d) \in A^d : k_1 a_1 + \cdots + k_d a_d = n\}$$

is constant for $n \geq n_0$?

Remark

We already observed that $r_A(n; 1, 1)$ cannot become constant. We can extend this to $r_A(n; 1, \ldots, 1)$.

Theorem (Moser 1962)

*For any $k \geq 2$ there exists $A \subseteq \mathbb{N}_0$ such that $r_A(n; 1, k, k^2, \ldots, k^{d-1}) = 1$.***

Theorem (Rué and Cilleruelo 2009)

For any $k_1, k_2 \geq 2$ and $A \subseteq \mathbb{N}_0$, $r_A(n; k_1, k_2)$ cannot become constant.
Additive representation functions

Theorem (Moser 1962)

For any \(k \geq 2 \) there exists \(A \subseteq \mathbb{N}_0 \) such that \(r_A(n; 1, k, k^2, \ldots, k^{d-1}) = 1 \).

Theorem (Rué and Cilleruelo 2009)

For any \(k_1, k_2 \geq 2 \) and \(A \subseteq \mathbb{N}_0 \), \(r_A(n; k_1, k_2) \) cannot become constant.
Theorem (Moser 1962)
For any $k \geq 2$ there exists $A \subseteq \mathbb{N}_0$ such that $r_A(n; 1, k, k^2, \ldots, k^{d-1}) = 1$.

Theorem (Rué and Cilleruelo 2009)
For any $k_1, k_2 \geq 2$ and $A \subseteq \mathbb{N}_0$, $r_A(n; k_1, k_2)$ cannot become constant.

Theorem (Rué and S. 2018+)
If there are pairwise co-prime integers $q_1, \ldots, q_m \geq 2$ such that

$$k_i = q_1^{b(i,1)} \cdots q_m^{b(i,m)} \geq 2$$ (3)

where $b(i, j) \in \{0, 1\}$, then $r_A(n; k_1, \ldots, k_d)$ cannot become constant for any infinite $A \subseteq \mathbb{N}_0$.

Additive representation functions
Additive representation functions

Theorem (Moser 1962)

For any \(k \geq 2 \) there exists \(A \subseteq \mathbb{N}_0 \) such that \(r_A(n; 1, k, k^2, \ldots, k^{d-1}) = 1 \).

Theorem (Rué and Cilleruelo 2009)

For any \(k_1, k_2 \geq 2 \) and \(A \subseteq \mathbb{N}_0 \), \(r_A(n; k_1, k_2) \) cannot become constant.

Theorem (Rué and S. 2018+)

If there are pairwise co-prime integers \(q_1, \ldots, q_m \geq 2 \) such that

\[
 k_i = q_1^{b(i,1)} \cdots q_m^{b(i,m)} \geq 2
\]

(3)

where \(b(i,j) \in \{0,1\} \), then \(r_A(n; k_1, \ldots, k_d) \) cannot become constant for any infinite \(A \subseteq \mathbb{N}_0 \). This includes the case of pairwise co-prime \(k_1, \ldots, k_d \geq 2 \).
The proof of Moser’s result

Theorem (Moser 1962)

For any $k \geq 2$ *there exists* $A \subseteq \mathbb{N}_0$ *such that* $r_A(n; 1, k) = 1$ *for all* $n \geq 0$.
The proof of Moser’s result

Theorem (Moser 1962)

For any $k \geq 2$ there exists $A \subseteq \mathbb{N}_0$ such that $r_A(n; 1, k) = 1$ for all $n \geq 0$.

Proof.

The generating function of A is $f_A(z) = \sum_{a \in A} z^a$.

Writing $f_A(z) = \left(1 - z\right)^{-1} f^{-1}_A(z^k)$ and repeatedly substituting, we get $f_A(z) = \prod_{j=0}^{\infty} \left(1 + z^{k^2} j + z^{2k^2} j + \cdots + z^{(k-1)k^2} j \right)$. This is the representation function of the set of all integers whose k^2-ary representation has only digits strictly smaller than k.

Theorem (Moser 1962)

For any $k \geq 2$ there exists $A \subseteq \mathbb{N}_0$ such that $r_A(n; 1, k) = 1$ for all $n \geq 0$.

Proof.

The generating function of A is $f_A(z) = \sum_{a \in A} z^a$. We have

$$f_A(z) f_A(z^k) = \sum_{(a,a') \in A^2} z^{a+ka'} = \sum_{n=0}^{\infty} r(n; 1, k) z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1 - z}. \quad (4)$$
The proof of Moser’s result

Theorem (Moser 1962)

For any \(k \geq 2 \) *there exists* \(A \subseteq \mathbb{N}_0 \) *such that* \(r_A(n; 1, k) = 1 \) *for all* \(n \geq 0 \).

Proof.

The generating function of \(A \) is \(f_A(z) = \sum_{a \in A} z^a \). We have

\[
f_A(z) f_A(z^k) = \sum_{(a, a') \in A^2} z^{a+ka'} = \sum_{n=0}^{\infty} r(n; 1, k) z^n = \sum_{n=0}^{\infty} z^n = \frac{1}{1 - z}.
\]

(4)

Writing \(f_A(z) = (1 - z)^{-1} f_A^{-1}(z^k) \) and repeatedly substituting,
The proof of Moser's result

Theorem (Moser 1962)

For any $k \geq 2$ *there exists* $A \subseteq \mathbb{N}_0$ *such that* $r_A(n; 1, k) = 1$ *for all* $n \geq 0$.

Proof.

The generating function of A is $f_A(z) = \sum_{a \in A} z^a$. We have

$$f_A(z)f_A(z^k) = \sum_{(a, a') \in A^2} z^{a+ka'} = \sum_{n=0}^\infty r(n; 1, k) z^n = \sum_{n=0}^\infty z^n = \frac{1}{1 - z}. \quad (4)$$

Writing $f_A(z) = (1 - z)^{-1}f_A^{-1}(z^k)$ and repeatedly substituting, we get

$$f_A(z) = \prod_{j=0}^\infty \left(1 + z^{(k^2)^j} + z^2(k^2)^j + \cdots + z^{(k-1)(k^2)^j} \right).$$
The proof of Moser’s result

Theorem (Moser 1962)
For any \(k \geq 2 \) there exists \(\mathcal{A} \subseteq \mathbb{N}_0 \) such that \(r_{\mathcal{A}}(n; 1, k) = 1 \) for all \(n \geq 0 \).

Proof.
The generating function of \(\mathcal{A} \) is \(f_{\mathcal{A}}(z) = \sum_{a \in \mathcal{A}} z^a \). We have

\[
\begin{align*}
f_{\mathcal{A}}(z)f_{\mathcal{A}}(z^k) &= \sum_{(a,a') \in \mathcal{A}^2} z^{a+ka'} = \sum_{n=0}^{\infty} r(n; 1, k) z^n \\
&= \sum_{n=0}^{\infty} z^n = \frac{1}{1 - z}.
\end{align*}
\]

Writing \(f_{\mathcal{A}}(z) = (1 - z)^{-1}f_{\mathcal{A}}^{-1}(z^k) \) and repeatedly substituting, we get

\[
f_{\mathcal{A}}(z) = \prod_{j=0}^{\infty} \left(1 + z^{(k^2)^j} + z^{2(k^2)^j} + \cdots + z^{(k-1)(k^2)^j} \right).
\]

This is the representation function of the set of all integers whose \(k^2 \)-ary representation has only digits strictly smaller than \(k \). \(\square \)
Proof Outline of Main Result

Proof Outline.
From here on we will abbreviate $r_A(n) = r_A(n; k_1, \ldots, k_d)$.

If $r_A(n)$ becomes constant, that is there exist $c > 0$ and $n_0 \geq 0$ such that $r_A(n) = c$ for $n \geq n_0 \geq 0$, then

$$
\sum_{n=0}^{\infty} r_A(n) z^n = n_0 - 1 \sum_{n=0}^{\infty} r_A(n) z^n + \sum_{n=n_0}^{\infty} c z^n = Q(z) + c z^{n_0} 1 - z = P(z) 1 - z
$$

where $Q \in \mathbb{N}[z]$ and $P \in \mathbb{Z}[z]$ are polynomials and $P(1) \neq 0$.

(5)
Proof Outline of Main Result

Proof Outline.
From here on we will abbreviate \(r_{\mathcal{A}}(n) = r_{\mathcal{A}}(n; k_1, \ldots, k_d) \).
Generalising the previous approach, we have

\[
 f_{\mathcal{A}}(z^{k_1}) \cdots f_{\mathcal{A}}(z^{k_d}) = \sum_{(a_1, \ldots, a_d) \in \mathcal{A}^d} z^{k_1a_1 + \cdots + k_da_d} = \sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^n. \tag{5}
\]
Proof Outline of Main Result

Proof Outline.
From here on we will abbreviate \(r_A(n) = r_A(n; k_1, \ldots, k_d) \).
Generalising the previous approach, we have

\[
\prod_{k=1}^{d} f_A(z^{k_k}) = \sum_{(a_1, \ldots, a_d) \in A^d} z^{k_1 a_1 + \cdots + k_d a_d} = \sum_{n=0}^{\infty} r_A(n) z^n. \tag{5}
\]

If \(r_A(n) \) becomes constant, that is there exist \(c > 0 \) and \(n_0 \geq 0 \) such that \(r_A(n) = c \) for \(n \geq n_0 \geq 0 \),
Proof Outline of Main Result

Proof Outline.
From here on we will abbreviate $r_A(n) = r_A(n; k_1, \ldots, k_d)$.
Generalising the previous approach, we have

$$f_A(z^{k_1}) \cdots f_A(z^{k_d}) = \sum_{(a_1, \ldots, a_d) \in A^d} z^{k_1a_1 + \cdots + k_d a_d} = \sum_{n=0}^{\infty} r_A(n) z^n. \quad (5)$$

If $r_A(n)$ becomes constant, that is there exist $c > 0$ and $n_0 \geq 0$ such that $r_A(n) = c$ for $n \geq n_0 \geq 0$, then

$$\sum_{n=0}^{\infty} r_A(n) z^n = \sum_{n=0}^{n_0-1} r_A(n) z^n + \sum_{n=n_0}^{\infty} c z^n = Q(z) + c \frac{z^{n_0}}{1-z} = \frac{P(z)}{1-z} \quad (6)$$
Proof Outline of Main Result

Proof Outline.
From here on we will abbreviate \(r_A(n) = r_A(n; k_1, \ldots, k_d) \). Generalising the previous approach, we have

\[
f_A(z^{k_1}) \cdots f_A(z^{k_d}) = \sum_{(a_1, \ldots, a_d) \in A^d} z^{k_1 a_1 + \cdots + k_d a_d} = \sum_{n=0}^{\infty} r_A(n) z^n. \tag{5}
\]

If \(r_A(n) \) becomes constant, that is there exist \(c > 0 \) and \(n_0 \geq 0 \) such that \(r_A(n) = c \) for \(n \geq n_0 \geq 0 \), then

\[
\sum_{n=0}^{\infty} r_A(n) z^n = \sum_{n=0}^{n_0-1} r_A(n) z^n + \sum_{n=n_0}^{\infty} c z^n = Q(z) + c \frac{z^{n_0}}{1 - z} = \frac{P(z)}{1 - z} \tag{6}
\]

where \(Q \in \mathbb{N}_0[z] \) and \(P \in \mathbb{Z}[z] \) are polynomials and \(P(1) \neq 0 \).
Proof Outline.

From here on we will abbreviate $r_{A}(n) = r_{A}(n; k_1, \ldots, k_d)$. Generalising the previous approach, we have

$$f_{A}(z^{k_1}) \cdots f_{A}(z^{k_d}) = \sum_{(a_1, \ldots, a_d) \in \mathcal{A}^d} z^{a_1k_1 + \cdots + a_dk_d} = \sum_{n=0}^{\infty} r_{A}(n) z^n. \quad (5)$$

If $r_{A}(n)$ becomes constant, that is there exist $c > 0$ and $n_0 \geq 0$ such that $r_{A}(n) = c$ for $n \geq n_0 \geq 0$, then

$$\sum_{n=0}^{\infty} r_{A}(n) z^n = \sum_{n=0}^{n_0-1} r_{A}(n) z^n + \sum_{n=n_0}^{\infty} c z^n = Q(z) + c \frac{z^{n_0}}{1-z} = \frac{P(z)}{1-z} \quad (6)$$

where $Q \in \mathbb{N}_0[z]$ and $P \in \mathbb{Z}[z]$ are polynomials and $P(1) \neq 0$. We have

$$f_{A}(z^{k_1}) \cdots f_{A}(z^{k_d}) = \frac{P(z)}{1-z}. \quad (7)$$
The *cyclotomic polynomial* of order n is given by

$$
\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi)
$$

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \pmod{n}\}$.
The *cyclotomic polynomial* of order n is given by

$$
\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi)
$$

(8)

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \mod n\}$. We have
The **cyclotomic polynomial** of order n is given by

$$
\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi)
$$

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \mod n\}$. We have

(i) $\Phi_n \in \mathbb{Z}[z]$ for all n
The *cyclotomic polynomial* of order n is given by

$$\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi)$$ \hspace{1cm} (8)

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \mod n\}$. We have

(i) $\Phi_n \in \mathbb{Z}[z]$ for all n and

(ii) Φ_n is irreducible over $\mathbb{Z}[z]$.

Introducing cyclotomic polynomials
Introducing cyclotomic polynomials

The *cyclotomic polynomial* of order n is given by

$$
\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi)
$$

(8)

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \mod n\}$. We have

(i) $\Phi_n \in \mathbb{Z}[z]$ for all n and

(ii) Φ_n is irreducible over $\mathbb{Z}[z]$.

Recall that $f_\lambda (z^{k_1}) \cdots f_\lambda (z^{k_d}) = P(z)/(1 - z)$ for some $P(z) \in \mathbb{Z}[z]$ satisfying $P(1) \neq 0$.

Introducing cyclotomic polynomials

The cyclotomic polynomial of order n is given by

$$\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi) \quad (8)$$

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \mod n\}$. We have

(i) $\Phi_n \in \mathbb{Z}[z]$ for all n and

(ii) Φ_n is irreducible over $\mathbb{Z}[z]$.

Recall that $f_A(z^{k_1}) \cdots f_A(z^{k_d}) = P(z)/(1 - z)$ for some $P(z) \in \mathbb{Z}[z]$ satisfying $P(1) \neq 0$. Now, for any n there exists a unique $s_n \in \mathbb{N}_0$ s.t.

$$P_n(z) = P(z) \Phi_n^{-s_n}(z) \quad (9)$$

satisfies $P_n(z) \in \mathbb{Z}[z]$ as well as $P_n(\xi) \neq 0$ for any $\xi \in \phi_n$.

Factoring out the generating function

If \(r_A(n) \) becomes constant for some \(A \subseteq \mathbb{N}_0 \), then

\[
f_A(z^{k_1}) \cdots f_A(z^{k_d}) = \frac{P(z)}{1 - z} \quad \text{where} \quad P(1) \neq 0
\]

(7)

\(P \) and there exist

\[P_n(z) = P(z) \Phi^{-s_n}(z) \]

satisfies

\[P_n(\xi) \neq 0 \quad \text{for} \quad \xi \in \phi_k. \]

(9)
Factoring out the generating function

If \(r_{\mathcal{A}}(n) \) becomes constant for some \(\mathcal{A} \subseteq \mathbb{N}_0 \), then

\[
f_{\mathcal{A}}(z^{k_1}) \cdots f_{\mathcal{A}}(z^{k_d}) = \frac{P(z)}{1 - z} \quad \text{where} \quad P(1) \neq 0 \tag{7}
\]

and there exist \(s_n \in \mathbb{N}_0 \) such that

\[
P_n(z) = P(z) \Phi_n^{-s_n}(z) \text{ satisfies } P_n(\xi) \neq 0 \quad \text{for} \quad \xi \in \phi_n. \tag{9}
\]
Factoring out the generating function

If \(r_A(n) \) becomes constant for some \(A \subseteq \mathbb{N}_0 \), then

\[
f_A(z^{k_1}) \cdots f_A(z^{k_d}) = \frac{P(z)}{1 - z} \quad \text{where} \quad P(1) \neq 0
\]

(7)

and there exist \(s_n \in \mathbb{N}_0 \) such that

\[
P_n(z) = P(z) \Phi^{-s_n}_n(z) \text{ satisfies } P_n(\xi) \neq 0 \text{ for } \xi \in \phi_n.
\]

(9)

Proposition

For any \((j_1, \ldots, j_d) \in \mathbb{N}_0^d \) there exist \(r_j \) satisfying

\[
\lim_{\omega \to 1} f(\omega \xi) \cdot \Phi^{-r_j}_{k_1^{j_1} \cdots k_d^{j_d}}(\omega \xi) \notin \{0, \pm \infty\}
\]

(10)

for any \(\xi \in \phi_{k_1^{j_1} \cdots k_d^{j_d}}. \)
Factoring out the generating function

If \(r_A(n) \) becomes constant for some \(A \subseteq \mathbb{N}_0 \), then

\[
f_A(z^{k_1}) \cdots f_A(z^{k_d}) = \frac{P(z)}{1 - z} \quad \text{where} \quad P(1) \neq 0
\]

(7)

and there exist \(s_n \in \mathbb{N}_0 \) such that

\[
P_n(z) = P(z) \Phi^{-s_n}(z) \quad \text{satisfies} \quad P_n(\xi) \neq 0 \quad \text{for} \quad \xi \in \phi_n.
\]

(9)

Proposition

For any \((j_1, \ldots, j_d) \in \mathbb{N}_0^d\) there exist \(r_j \) satisfying

\[
\lim_{\omega \to 1} f(\omega \xi) \cdot \Phi^{-r_j}_{k_1^{j_1} \cdots k_d^{j_d}}(\omega \xi) \notin \{0, \pm \infty\}
\]

(10)

for any \(\xi \in \phi_{k_1^{j_1} \cdots k_d^{j_d}} \). These exponents satisfy \(r_0 = -1/d \).
Factoring out the generating function

If \(r_{\mathcal{A}}(n) \) becomes constant for some \(\mathcal{A} \subseteq \mathbb{N}_0 \), then

\[
f_{\mathcal{A}}(z^{k_1}) \cdots f_{\mathcal{A}}(z^{k_d}) = \frac{P(z)}{1 - z} \quad \text{where} \quad P(1) \neq 0 \tag{7}
\]

and there exist \(s_n \in \mathbb{N}_0 \) such that

\[
P_n(z) = P(z) \Phi_n^{-s_n}(z) \quad \text{satisfies} \quad P_n(\xi) \neq 0 \quad \text{for} \quad \xi \in \phi_n. \tag{9}
\]

Proposition

For any \((j_1, \ldots, j_d) \in \mathbb{N}_0^d \) there exist \(r_j \) satisfying

\[
\lim_{\omega \to 1} f(\omega \xi) \cdot \Phi_{k_1 \cdots k_d}^{-r_j}(\omega \xi) \notin \{0, \pm \infty\} \tag{10}
\]

for any \(\xi \in \phi_{k_1 \cdots k_d} \). These exponents satisfy \(r_0 = -1/d \) and

\[
r_{j_1 \oplus b(1,1), \ldots, j_d \oplus b(d,1)} + \cdots + r_{j_1 \oplus b(1,m), \ldots, j_d \oplus b(d,m)} = ds_j \tag{11}
\]

for all \(j \in \mathbb{N}_0^m \setminus \{0\} \) where \(a \oplus b = \max(a - b, 0) \) and \(s_j = s_{k_1 \cdots k_d} \).
Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d = 2$.
Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d = 2$. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

(i) $r_{(0,0)} = -1/2$,

(ii) $r_{(j+1,0)} = s_{(j+1,0)} - r_{(j,0)}$,

(iii) $r_{(0,j+1)} = s_{(0,j+1)} - r_{(0,j)}$ and

(iv) $r_{(j_1+1,j_2)} + r_{(j_1,j_2+1)} = s_{(j_1+1,j_2+1)}$.

Consider the case of Rué and Cilleruelo, that is we have \(d = 2 \). The proposition gives the existence of \(\{r_j : j \in \mathbb{N}_0^2 \} \) satisfying

(i) \(r_{(0,0)} = -1/2 \),

(ii) \(r_{(j+1,0)} = s_{(j+1,0)} - r_{(j,0)} \),

(iii) \(r_{(0,j+1)} = s_{(0,j+1)} - r_{(0,j)} \) and

(iv) \(r_{(j_1+1,j_2)} + r_{(j_1,j_2+1)} = s_{(j_1+1,j_2+1)} \).

Inductively, as \(s_* \in \mathbb{N}_0 \), we have \(r_* \notin \mathbb{Z} \) and therefore \(r_* \neq 0 \) due to (i).
Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d = 2$. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

(i) $r_{(0,0)} = -1/2$,

(ii) $r_{(j+1,0)} = s_{(j+1,0)} - r_{(j,0)}$,

(iii) $r_{(0,j+1)} = s_{(0,j+1)} - r_{(0,j)}$ and

(iv) $r_{(j_1+1,j_2)} + r_{(j_1,j_2+1)} = s_{(j_1+1,j_2+1)}$.

Inductively, as $s_* \in \mathbb{N}_0$, we have $r_* \notin \mathbb{Z}$ and therefore $r_* \neq 0$ due to (i). As P is a polynomial there exists ℓ_0 such that $s_{j_1,j_2} = 0$ if $j_1 + j_2 \geq \ell_0$.
Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have \(d = 2 \). The proposition gives the existence of \(\{r_j : j \in \mathbb{N}_0^2\} \) satisfying

(i) \(r_{(0,0)} = -1/2 \),

(ii) \(r_{(j+1,0)} = s_{(j+1,0)} - r_{(j,0)} \),

(iii) \(r_{(0,j+1)} = s_{(0,j+1)} - r_{(0,j)} \) and

(iv) \(r_{(j_1+1,j_2)} + r_{(j_1,j_2+1)} = s_{(j_1+1,j_2+1)} \).

Inductively, as \(s_* \in \mathbb{N}_0 \), we have \(r_* \notin \mathbb{Z} \) and therefore \(r_* \neq 0 \) due to (i).

As \(P \) is a polynomial there exists \(\ell_0 \) such that \(s_{j_1,j_2} = 0 \) if \(j_1 + j_2 \geq \ell_0 \).

Assume w.l.o.g. that \(\ell_0 \) is odd.
Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d = 2$. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

(i) $r_{(0,0)} = -1/2$,
(ii) $r_{(j+1,0)} = s_{(j+1,0)} - r_{(j,0)}$,
(iii) $r_{(0,j+1)} = s_{(0,j+1)} - r_{(0,j)}$ and
(iv) $r_{(j_1+1,j_2)} + r_{(j_1,j_2+1)} = s_{(j_1+1,j_2+1)}$.

Inductively, as $s_* \in \mathbb{N}_0$, we have $r_* \notin \mathbb{Z}$ and therefore $r_* \neq 0$ due to (i). As P is a polynomial there exists ℓ_0 such that $s_{j_1,j_2} = 0$ if $j_1 + j_2 \geq \ell_0$. Assume w.l.o.g. that ℓ_0 is odd. Now

- $r_{(\ell_0+1,0)} = -r_{(\ell_0,0)}$ due to (ii),
Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d = 2$. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

(i) $r_{(0,0)} = -1/2$,

(ii) $r_{(j+1,0)} = s_{(j+1,0)} - r_{(j,0)}$,

(iii) $r_{(0,j+1)} = s_{(0,j+1)} - r_{(0,j)}$ and

(iv) $r_{(j_1+1,j_2)} + r_{(j_1,j_2+1)} = s_{(j_1+1,j_2+1)}$.

Inductively, as $s_\ast \in \mathbb{N}_0$, we have $r_\ast \notin \mathbb{Z}$ and therefore $r_\ast \neq 0$ due to (i). As P is a polynomial there exists ℓ_0 such that $s_{j_1,j_2} = 0$ if $j_1 + j_2 \geq \ell_0$. Assume w.l.o.g. that ℓ_0 is odd. Now

- $r_{(\ell_0+1,0)} = -r_{(\ell_0,0)}$ due to (ii),
- $r_{(0,\ell_0+1)} = -r_{(0,\ell_0)}$ due to (iii),
Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d = 2$. The proposition gives the existence of \(\{r_j : j \in \mathbb{N}_0^2\} \) satisfying

\begin{align*}
(i) & \quad r_{(0,0)} = -1/2, \\
(ii) & \quad r_{(j+1,0)} = s_{(j+1,0)} - r_{(j,0)}, \\
(iii) & \quad r_{(0,j+1)} = s_{(0,j+1)} - r_{(0,j)} \text{ and} \\
(iv) & \quad r_{(j_1+1,j_2)} + r_{(j_1,j_2+1)} = s_{(j_1+1,j_2+1)}.
\end{align*}

Inductively, as $s_* \in \mathbb{N}_0$, we have $r_* \notin \mathbb{Z}$ and therefore $r_* \neq 0$ due to (i). As P is a polynomial there exists ℓ_0 such that $s_{j_1,j_2} = 0$ if $j_1 + j_2 \geq \ell_0$. Assume w.l.o.g. that ℓ_0 is odd. Now

- $r_{(\ell_0+1,0)} = -r_{(\ell_0,0)}$ due to (ii),
- $r_{(0,\ell_0+1)} = -r_{(0,\ell_0)}$ due to (iii),
- $r_{(\ell_0,0)} = r_{(0,\ell_0)}$ and $r_{(\ell_0+1,0)} = -r_{(0,\ell_0+1)}$ due to (iv)
Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d = 2$. The proposition gives the existence of $\{ r_j : j \in \mathbb{N}_0^2 \}$ satisfying

(i) $r_{(0,0)} = -1/2$,
(ii) $r_{(j+1,0)} = s_{(j+1,0)} - r_{(j,0)}$,
(iii) $r_{(0,j+1)} = s_{(0,j+1)} - r_{(0,j)}$ and
(iv) $r_{(j_1+1,j_2)} + r_{(j_1,j_2+1)} = s_{(j_1+1,j_2+1)}$.

Inductively, as $s_* \in \mathbb{N}_0$, we have $r_* \notin \mathbb{Z}$ and therefore $r_* \neq 0$ due to (i). As P is a polynomial there exists ℓ_0 such that $s_{j_1,j_2} = 0$ if $j_1 + j_2 \geq \ell_0$. Assume w.l.o.g. that ℓ_0 is odd. Now

- $r_{(\ell_0+1,0)} = -r_{(\ell_0,0)}$ due to (ii),
- $r_{(0,\ell_0+1)} = -r_{(0,\ell_0)}$ due to (iii),
- $r_{(\ell_0,0)} = r_{(0,\ell_0)}$ and $r_{(\ell_0+1,0)} = -r_{(0,\ell_0+1)}$ due to (iv)

implying the contradiction $r_{(\ell_0,0)} = r_{(0,\ell_0)} = r_{(\ell_0+1,0)} = r_{(0,\ell_0+1)} = 0$. □
Remarks and Open Problems

Conjecture

The cases covered by Moser, that is $1, k, k^2, \ldots, k^{d-1}$, are the only ones for which $r_A(n)$ can become constant.

1. What about cases not covered by our result, e.g. $r_A(n; 2, 3, 4)$ or $r_A(1, 2, 6)$?

2. What about the unordered variant

$$R_A(n; k_1, \ldots, k_d) = \# \left\{ \{a_1, \ldots, a_d\} \in 2^A : k_1 a_1 + \cdots + k_d a_d = n \right\} ?$$

3. What about an Erdős-Fuchs-type result for $k_1 = 2$ and $k_2 = 3$?
Thank you for your attention!