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Erdős’ Ramsey Multiplicity Conjecture
The field of Ramsey theory is concerned with finding order in any
large enough system. The Ramsey-number R(s, t) is the smallest
integer n such that any graph on n vertices contains a complete
subgraph of size s or an independent set of size t.

Ramsey’s Theorem (1930)

R(s, t) exists for any integers s and t.

Determining R(s, t), either for specific values of s, t or asymptoti-
cally as either or both tend to infinity, is a problemwith a long his-
tory. A related problem asks for the minimum density of copies
of the complete subgraph Ks and independent sets of size t in
any n-vertex graphs. While for n < R(s, t) this is zero, but the be-
havior becomes asymptotically interesting as n tends to infinity.

The (s, t)-Ramsey Multiplicity Problem

Denoting the density of s-cliques in a graphG by cs(G), determine

cs,t = lim
n→∞

min{cs(G) + ct(G) : v(G) = n}.

Goodman [3] established that c3,3 = 1/4, the same value as
given by a random graph. This motivated the following famous
conjecture by Erdős when s = t.

Conjecture of Erdős (1962)

ct,t = 21−(
t
2) for any integer t.

This was refuted by Thomason [12] for all t > 3. In particular for
t = 4, he established that c4,4 ≤ 0.03029 < 0.03125 = 21−6. It
has also been shown that c4,4 > 0.0296. His constructions have
received much attention over the years, but have proven difficult
to improve upon.

Our Results
We obtain the new bounds

c4,4 < 0.03015

and
0.001524 < c5,5 < 0.001708.

We also study the off-diagonal case and prove that

c3,4 = 689 · 3−8 and c3,5 = 24011 · 3−12.

Upper bounds are established through computer search heuris-
tics and lower bounds using Flag Algebra SDP formulations, re-
sulting in a fully computer-assisted approach [7].

Upper Bounds through Search Heuristics
Any finite sized graph can serve as an upper bound through its
sequence of blow-ups. To drastically reduce the search space
we focused on constructing Cayley graphs. Most previous con-
structions are in fact Cayley graphs. For a given group G of
order n, let s ∈ {0, 1}N represent a symmetric generating set
S ⊆ G \ {0} and Gs Cayley graph constructed this way. The opti-
mization problem we are interested can be described as follows:

The optimization problem for upper bounds

cs,t ≤ min
group G

min
s∈{0,1}N

k! cs(Gs)
(n
k
)

nk
+

t∑
j=1

j!S(t, j) cj(Gs)
(n
j
)

nt
.

Metaheuristics are a natural fit for this problem. We focused
on twowell-established probabilistic local searchmethods: Sim-
ulated Annealing [5] avoids getting stuck by also accepting
slightly worse states according to some cooling criterion and
Tabu Search [2] achieves the same by moving to the best neigh-
bouring state that has not been visited recently.

The construction for our upper bound on c4,4 was found in the
group C×2

3 × C×5
2 and has 768 vertices and for c5,5 it was found

in C3×C×6
2 and has 192 vertices. Thematching upper bounds for

c3,4 and c3,5 are given by the Schläfli graph and its complement.

Figure 1. The Schläfli graph is a strongly regular graph on 27 vertices.

Lower Bounds through SDPs
Razborov [9] phrased this type of problem in the language of fi-
nite model theory, allowing one to derive lower bounds through
semidefinite programming. For any integer m ∈ N, we let Gm de-
note all graphs of orderm andDH amatrix representing particular
pair densities of smaller graphs in H ∈ Gm. We are interested in
solving the following semidefinite problem:

The optimization problem for lower bounds

cs,t ≥ max
Q⪰0

min
H∈Gm

cs(H) + ct(H)− ⟨Q, DH⟩.

The size of the problem and the quality of the bound the SDP
solver can produce is predominantly determined by m. Currently
the largest realistically solvable appears to be m = 8, though our
tight bounds for c3,4 and c3,5 are established already withm = 6.
Beyond the asymptotics this approach can also give information
about the uniqueness of the constructions and stability [8]. We
show that anything that comes close to c3,4 must be close to a
symmetric blow-up of the Schläfli graph.

Restricting the Independence Number
One can restrict the independence number and ask for the
asymptotic minimum density of independents sets of size s in
that case, that is we want to determine

gs,t = lim
n→∞

min{cs(G) : v(G) = n, ct(G) = 0}.

So far only g3,s and gs,3 for 3 ≤ s ≤ 7 are known. We prove that

g4,5 = 29 · 13−3 ,

and also establish stability with respect to symmetric blow-ups
of the unique (3,5)-Ramsey graph on 13 vertices.

Characterizing the Whole Region
Determining these parameters is part of a more general ques-
tions where one is interested in characterizing the entire region
of points in [0, 1]2 than can be realized as densities of cliques and
independent sets of a sequence of graphs. Define the region Ωs,t
as all (x, y) ∈ [0, 1]2 for which there exists a sequence of n-vertex
graphs (Gn)n∈N with

lim
n→∞

ks(Gn)/

(
n
s

)
= x and lim

n→∞
kt(Gn)/

(
n
t

)
= y

We show that Ωs,t is compact, simply connected, and its upper
and lower bounding curves are decreasing, continuous, and al-
most everywhere differentiable. Ω2,t was famously character-
ized by Razborov [10] for t = 3, Nikiforov [6] for t = 4, and Rei-
her [11] in general. Ω3,3 was characzerized by Huang et. al. [4].
We illustrate our findings on Ω3,4 in Figure 2. The blue line is the
linear lower bound y = c3,4 − x, the blue dotted line is an addi-
tional linear lower bound for, the red dots represent optimal con-
structions, and the grey dots represent additional constructions.
Somewhat surprisingly, the constructions seems to get more
complex into either direction starting from the Schläfli graph.
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Figure 2. What is known about the region Ω3,4

Discussion and Outlook
The main goal of this work is to use a computer driven search
to obtain constructions of graphs with small density of cliques
of order s and density of independent sets of order t. The most
important question regarding the Ramsey multiplicity of K4 is
less its exact value, but rather whether it is given by the blow-up
of a finite graph. We believe that our answer to the c3,4 problem
provides some support to the possibility that the value of c4,4 will
also be determined by the blow-up sequence of a single graph.

Regarding future work that could build upon the presented tools,
we believe there are three major points of interest:

Using different optimization methodologies besides the
mentioned search heuristics, the upper bounds derived from
the optimization problems relating to c4,4 and c5,5 could be
further improved.

Using different constructive approaches, i.e., generalizing
the notion of blow-ups or using other constructions besides
Cayley graphs as the base, further improvements or even
solutions to c4,4 and c5,5 could be obtained. It is quite likely
that an immediate improvement can be gained from the
found constructions using an iterative blow-up construction
as done by Even-Zohar and Linial [1].

There is a large number of important but distinct problems
in Extremal Combinatorics besides the ones explicitly
studied here, where the best current bounds are obtained by
concrete and finitely describable constructions. It would be
of great interest to see the methodologies applied here to the
Ramsey Multiplicity problem and its variants also find
application there.
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