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Flag Algebras at Scale: Opening up new Horizons
Aldo Kiem (TUB / ZIB), Sebastian Pokutta (TUB / ZIB), and Christoph Spiegel (ZIB)

The theory of Flag Algebras
Flag algebras are a highly successful formalism due to Razborov [6, 2] to study the limit behavior of
combinatorial structures. For every universal first-order theory T, the fundamental object of study is
a partially ordered R-algebra A that contains all models of the theory T.

What can we define Flag Algebras for?

Theories for which flag algebras have been formulated in the past are those of simple graphs, vertex-
or edge-colored graphs, directed graphs, oriented graphs, partially ordered sets, k-uniform hyper-
graphs and permutations of finite sets. We can also study variants of these theories, for example in
the form of triangle-free graphs or 3-uniform hypergraphs without independent sets of size 4.
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Figure 1. Some examples of combinatorial objects for which flag algebras have been explored in the past, from left to
right: edge- and vertex-colored graphs, directed graphs, and 3-uniform hypergraphs.

Restating combinatorial problems through Conic Optimization

Most open problems in the area consider an element f ∈ A for a given theory T with the goal of
finding a lower bound on f. Defining the semantic cone of A as

S = {F ∈ A | ϕ(F) ≥ 0 for all ϕ ∈ Hom+(A,R)}, (1)

the optimization problem we are interested in can be stated as determining

max{λ | f − c∅ ∈ S and c ∈ R}. (2)

Truly optimizing over the semantic cone is computationally intractable, so a relaxation is needed.

Problem relaxation: sums of squares

We approximate the semantic cones S with the cone given by the vectors that are sums of squares
in A. A certificate of f − c∅ ∈ S , i.e., f − c ≥ 0 can be obtained from

f − c =
∑

M∈A
λMM +

∑

σ

iσ∑

i=1
[[g2i,σ]]σ (3)

Here, the σ are fully labeledmodels, called types, inducing their own algebraAσ, in particularA∅ = A
for the empty type∅, each gi,σ ∈ Aσ is anR-linear combinations of σ-partially-labeled models, called
flags, and [[·]]σ is the unlabelling operator. We can use semi-definite programming to determine such
bounds. The asymptotic version of a famous result of Goodman [4], stating that in the limit any graph
must contain at least 1/4 of all possible cliques and independent sets of size three, can for example
be obtained through the following formulation:
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Flag Algebras for Edge-Colored Graphs

Previous results for three-edge-colored graphs

Cummings et al. [3] extended the result of Goodman to three colors, proving that
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This inequality is matched by the upper bound given by blow-ups based on the 3-Ramsey graph:
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Figure 2. The unique graph on R(3,3)− 1 = 5 vertices not containing any triangles or their complement turned into a
sequence of 3-edge-colored graphs through a blow-up construction.

Balogh et al. [1] showed that rainbow triangles have the following upper bound:
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A matching lower bound arises from an iterated blow-up construction of the following coloring:
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Figure 3. The base construction of the iterated blow-up sequence.

Our Contribution
We exploit symmetries in Flag Algebra formulations in order to reduce their size and extend the
envelope of what is attainable using this technique. Using a parameter-dependent notion of homo-
morphisms, we can for example reduce SDPs for c-edge-colored graphs by a factor of up to c!. We
also block-diagonalize the formulation, reducing the total number of variables.

Applying these methods, we can show for four-edge-colored graphs that
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extending the results of Goodman and Cummings et al. This is matched by an upper bound based
on balanced blow-up of a triangle-free Ramsey 3-edge-coloring on R(3,3,3) − 1 = 17 vertices. Until
now this value had been out of reach due to the size of the required SDP formulation.

Flag Algebras in Additive Combinatorics
There has been an increased interest in the arithmetic analogue of these questions. Graham, Rödl,
and Rucińsky [5] were perhaps the first to study this, when they gave a lower bound for the number
of Schur triples in 2-colorings of the integers, while Saad and Wolf [7] more recently revived interest
in this area. Despite their success for graph-based theories, Flag Algebras so far have not been
explored in this setting. We take a first step in that direction by developing the required theory in the
finite-fieldmodel, that is for linear systems inFn

q, and applying it to somepreviously studied problems.

Our Contribution
We develop two distinct notions of morphism for colorings of Fn

q. The first aligns with the traditional
notion of homomorphisms of vector spaces and is relevant for non-invariant additive structures
such as Schur triples. The second can be considered as an affine version and is useful when exclu-
sively dealing with invariant additive structures such as arithmetic progressions.

q/n 1 2 3 4 5
2 4 8 20 92 2744
3 6 36 15 636
4 14 7724
5 12 72 192

q/n 1 2 3 4 5
2 3 5 10 32 382
3 4 14 1028
4 8 1648
5 6 3324

Table 1. Number of 2-colorings of Fn
q up to isomorphism of the first (left) and the second type (right).

Using the resulting theory, we improve previous results and extend important ideas from the theory
of graph colorings. Most importantly, wo obtain upper and lower bounds on the number of 4-APs in
colorings of Fn

5, improving upon previous efforts of Saad and Wolf [7].
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