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Computer-Assisted Proofs in Combinatorics

1. The Ramsey Multiplicity Problem

2. Search Heuristics for Constructive Bounds

3. Beyond the Ramsey multiplicity of quadrangles



1. The Ramsey Multiplicity Problem

The Ramsey Multiplicity Problem
Theorem (Ramsey 1930)

For any s, t ∈ N there exists Rs,t ∈ N such that any graph of order at least Rs,t
contains either a clique of size s or an independent set of size t.

A well-known question
Can we determine the Ramsey numbers

Rs,t or their asymptotic behavior?

A related question
How many cliques and independent

sets do we need to have?

Theorem (Goodman 1959 – asymptotic version)

Asymptotically at least 1/4 of all triangles are either cliques or independent sets.

There has been little progress towards an answer for any {s, t} 6= {3}.



1. The Ramsey Multiplicity Problem

The Ramsey Multiplicity Problem
Theorem (Ramsey 1930)

For any s, t ∈ N there exists Rs,t ∈ N such that any graph of order at least Rs,t
contains either a clique of size s or an independent set of size t.

A well-known question
Can we determine the Ramsey numbers

Rs,t or their asymptotic behavior?

A related question
How many cliques and independent

sets do we need to have?

Theorem (Goodman 1959 – asymptotic version)

Asymptotically at least 1/4 of all triangles are either cliques or independent sets.

There has been little progress towards an answer for any {s, t} 6= {3}.



1. The Ramsey Multiplicity Problem

The Ramsey Multiplicity Problem
Theorem (Ramsey 1930)

For any s, t ∈ N there exists Rs,t ∈ N such that any graph of order at least Rs,t
contains either a clique of size s or an independent set of size t.

A well-known question
Can we determine the Ramsey numbers

Rs,t or their asymptotic behavior?

A related question
How many cliques and independent

sets do we need to have?

Theorem (Goodman 1959 – asymptotic version)

Asymptotically at least 1/4 of all triangles are either cliques or independent sets.

There has been little progress towards an answer for any {s, t} 6= {3}.



1. The Ramsey Multiplicity Problem

The Ramsey Multiplicity Problem
Theorem (Ramsey 1930)

For any s, t ∈ N there exists Rs,t ∈ N such that any graph of order at least Rs,t
contains either a clique of size s or an independent set of size t.

A well-known question
Can we determine the Ramsey numbers

Rs,t or their asymptotic behavior?

A related question
How many cliques and independent

sets do we need to have?

Theorem (Goodman 1959 – asymptotic version)

Asymptotically at least 1/4 of all triangles are either cliques or independent sets.

There has been little progress towards an answer for any {s, t} 6= {3}.



1. The Ramsey Multiplicity Problem

The Ramsey Multiplicity Problem
Theorem (Ramsey 1930)

For any s, t ∈ N there exists Rs,t ∈ N such that any graph of order at least Rs,t
contains either a clique of size s or an independent set of size t.

A well-known question
Can we determine the Ramsey numbers

Rs,t or their asymptotic behavior?

A related question
How many cliques and independent

sets do we need to have?

Theorem (Goodman 1959 – asymptotic version)

Asymptotically at least 1/4 of all triangles are either cliques or independent sets.

There has been little progress towards an answer for any {s, t} 6= {3}.



1. The Ramsey Multiplicity Problem

Beyond Goodman’s Result
Notation. Let Gn denote all graphs of order n and ks(G) the fraction of s-cliques in G .

Problem (Ramsey Multiplicity)

What is the value of ms,t = limn→∞minG∈Gn ks(G) + kt(G)?

So far studied for s = t, though recently Behague et al. (2022+) also considered the
off-diagonal case. For s, t = 3 tight upper bound given by the binomial random graph.

Conjecture (Erdős 1962)

mt,t = 21−(t
2) for any t ≥ 2. False for t ≥ 4 (Thomason 1989)

How can we use computers to find bounds beyond human intuition?
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mt,t = 21−(t
2) for any t ≥ 2. False for t ≥ 4 (Thomason 1989)

How can we use computers to find bounds beyond human intuition?



1. The Ramsey Multiplicity Problem

Beyond Goodman’s Result
Notation. Let Gn denote all graphs of order n and ks(G) the fraction of s-cliques in G .

Problem (Ramsey Multiplicity)

What is the value of ms,t = limn→∞minG∈Gn ks(G) + kt(G)?

So far studied for s = t, though recently Behague et al. (2022+) also considered the
off-diagonal case. For s, t = 3 tight upper bound given by the binomial random graph.

Conjecture (Erdős 1962)
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2. Search Heuristics for Constructive Bounds

How to blow up graphs
Notation. Let G◦n denote all possibly looped graphs of order n and k◦s (G) the fraction
of not nec. injective maps from Ks to G that are strong graph homomorphisms.

Proposition (Bounds from any graph)

We have ms,t ≤ k◦s (G) + k◦t (G) for any G ∈ G◦ = ⋃
n G◦n .

Proof. The m-fold blow-up G×m ∈ Gnm of G is obtained by replacing each vertex v in
G with m copies v1, . . . , vm and connecting vi with wj in G×m if v is adjacent to w in
G. By definition ms,t ≤ limm→∞ ks(G×m) + kt(G×m) = k◦s (G) + k◦t (G).

Corollary (Relating Ramsey numbers and Ramsey multiplicity)

By blowing up Ramsey graphs, we get ms,t ≤ (Rs,t − 1)1−t .



2. Search Heuristics for Constructive Bounds

How to blow up graphs
Notation. Let G◦n denote all possibly looped graphs of order n and k◦s (G) the fraction
of not nec. injective maps from Ks to G that are strong graph homomorphisms.

Proposition (Bounds from any graph)

We have ms,t ≤ k◦s (G) + k◦t (G) for any G ∈ G◦ = ⋃
n G◦n .

Proof. The m-fold blow-up G×m ∈ Gnm of G is obtained by replacing each vertex v in
G with m copies v1, . . . , vm and connecting vi with wj in G×m if v is adjacent to w in
G. By definition ms,t ≤ limm→∞ ks(G×m) + kt(G×m) = k◦s (G) + k◦t (G).

Corollary (Relating Ramsey numbers and Ramsey multiplicity)

By blowing up Ramsey graphs, we get ms,t ≤ (Rs,t − 1)1−t .



2. Search Heuristics for Constructive Bounds

How to blow up graphs
Notation. Let G◦n denote all possibly looped graphs of order n and k◦s (G) the fraction
of not nec. injective maps from Ks to G that are strong graph homomorphisms.

Proposition (Bounds from any graph)

We have ms,t ≤ k◦s (G) + k◦t (G) for any G ∈ G◦ = ⋃
n G◦n .

Proof. The m-fold blow-up G×m ∈ Gnm of G is obtained by replacing each vertex v in
G with m copies v1, . . . , vm and connecting vi with wj in G×m if v is adjacent to w in
G. By definition ms,t ≤ limm→∞ ks(G×m) + kt(G×m) = k◦s (G) + k◦t (G).

Corollary (Relating Ramsey numbers and Ramsey multiplicity)

By blowing up Ramsey graphs, we get ms,t ≤ (Rs,t − 1)1−t .



2. Search Heuristics for Constructive Bounds

How to blow up graphs
Notation. Let G◦n denote all possibly looped graphs of order n and k◦s (G) the fraction
of not nec. injective maps from Ks to G that are strong graph homomorphisms.

Proposition (Bounds from any graph)

We have ms,t ≤ k◦s (G) + k◦t (G) for any G ∈ G◦ = ⋃
n G◦n .

Proof. The m-fold blow-up G×m ∈ Gnm of G is obtained by replacing each vertex v in
G with m copies v1, . . . , vm and connecting vi with wj in G×m if v is adjacent to w in
G. By definition ms,t ≤ limm→∞ ks(G×m) + kt(G×m) = k◦s (G) + k◦t (G).

Corollary (Relating Ramsey numbers and Ramsey multiplicity)

By blowing up Ramsey graphs, we get ms,t ≤ (Rs,t − 1)1−t .



2. Search Heuristics for Constructive Bounds

How to blow up graphs
Notation. Let G◦n denote all possibly looped graphs of order n and k◦s (G) the fraction
of not nec. injective maps from Ks to G that are strong graph homomorphisms.

Proposition (Bounds from any graph)

We have ms,t ≤ k◦s (G) + k◦t (G) for any G ∈ G◦ = ⋃
n G◦n .

Proof. The m-fold blow-up G×m ∈ Gnm of G is obtained by replacing each vertex v in
G with m copies v1, . . . , vm and connecting vi with wj in G×m if v is adjacent to w in
G. By definition ms,t ≤ limm→∞ ks(G×m) + kt(G×m) = k◦s (G) + k◦t (G).

Corollary (Relating Ramsey numbers and Ramsey multiplicity)

By blowing up Ramsey graphs, we get ms,t ≤ (Rs,t − 1)1−t .



2. Search Heuristics for Constructive Bounds
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G. By definition ms,t ≤ limm→∞ ks(G×m) + kt(G×m) = k◦s (G) + k◦t (G).

Question: How can we find better candidates for G?
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Theorem (Thomason 1989)

m4,4 ≤ 0.3050 and m5,5 ≤ 0.001770.
Explicit by-hand construction
with local search improvements.
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How to blow up graphs
Notation. Let G◦n denote all possibly looped graphs of order n and k◦s (G) the fraction
of not nec. injective maps from Ks to G that are strong graph homomorphisms.

Proposition (Bounds from any graph)
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G. By definition ms,t ≤ limm→∞ ks(G×m) + kt(G×m) = k◦s (G) + k◦t (G).

Theorem (Franek and Rödl 1993)

m4,4 ≤ 0.03052 (not an improvement)
Exhaustive search over
specific powerset constructions.
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How to blow up graphs
Notation. Let G◦n denote all possibly looped graphs of order n and k◦s (G) the fraction
of not nec. injective maps from Ks to G that are strong graph homomorphisms.

Proposition (Bounds from any graph)

We have ms,t ≤ k◦s (G) + k◦t (G) for any G ∈ G◦ = ⋃
n G◦n .

Proof. The m-fold blow-up G×m ∈ Gnm of G is obtained by replacing each vertex v in
G with m copies v1, . . . , vm and connecting vi with wj in G×m if v is adjacent to w in
G. By definition ms,t ≤ limm→∞ ks(G×m) + kt(G×m) = k◦s (G) + k◦t (G).

Theorem (Thomason 1997)

m4,4 ≤ 0.03031 and m5,5 ≤ 0.001720.
Exhaustive search over
small XOR graph products.



2. Search Heuristics for Constructive Bounds

How to blow up graphs
Notation. Let G◦n denote all possibly looped graphs of order n and k◦s (G) the fraction
of not nec. injective maps from Ks to G that are strong graph homomorphisms.

Proposition (Bounds from any graph)

We have ms,t ≤ k◦s (G) + k◦t (G) for any G ∈ G◦ = ⋃
n G◦n .

Proof. The m-fold blow-up G×m ∈ Gnm of G is obtained by replacing each vertex v in
G with m copies v1, . . . , vm and connecting vi with wj in G×m if v is adjacent to w in
G. By definition ms,t ≤ limm→∞ ks(G×m) + kt(G×m) = k◦s (G) + k◦t (G).

Theorem (Even-Zohar and Linial ’15)

m4,4 ≤ 0.03028.
Iterating the construction
of Thomason (1997).



2. Search Heuristics for Constructive Bounds

How to blow up graphs
Notation. Let G◦n denote all possibly looped graphs of order n and k◦s (G) the fraction
of not nec. injective maps from Ks to G that are strong graph homomorphisms.

Proposition (Bounds from any graph)

We have ms,t ≤ k◦s (G) + k◦t (G) for any G ∈ G◦ = ⋃
n G◦n .

Proof. The m-fold blow-up G×m ∈ Gnm of G is obtained by replacing each vertex v in
G with m copies v1, . . . , vm and connecting vi with wj in G×m if v is adjacent to w in
G. By definition ms,t ≤ limm→∞ ks(G×m) + kt(G×m) = k◦s (G) + k◦t (G).

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

m4,4 ≤ 0.03012 and m5,5 ≤ 0.001707.
Search heuristics over Cayley
graph search space ...



2. Search Heuristics for Constructive Bounds

Constructing graphs through search heuristics
We phrased the problem through binary representations and applied Metaheuristics,
i.e., Simulated Annealing (Kirkpatrick et al. 1983) and Tabu search (Glover 1986):

For any binary vector x = (x1, . . . , x(n
2)+n) ∈ {0, 1}(

n
2)+n let the graph Gx ∈ G◦n be given

by connecting any two vertices 1 ≤ i ≤ j ≤ n if x(j
2)+i = 1. We want to determine

min
x

k◦s (Gx) + k◦t (Gx). (1)

Disadvantages. Problem structure is ignored. No guarantees of optimality.
Advantages. Applicable to many problems. Optimality through matching bounds.

SA and TS have previously proven successful in finding Ramsey numbers. Recently
learning-based approaches have also been suggested (Wagner 2021; Bello et al. 2016).
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2. Search Heuristics for Constructive Bounds

Constructing Cayley graphs through search heuristics
Unfortunately does not scale beyond n ≈ 40, barely disproving Erdős’ original
conjecture for m4,4. Can we bias the search space using combinatorial insights?
Turns out all previous constructions are actually graphs with very specific symmetries:

Definition (Cayley graphs)

Given an abelian group G and set S ⊆ G? satisfying S−1 = S, the associated Cayley
graph has vertex set G and g1, g2 ∈ G are adjacent if and only if g−1

1 g2 ∈ S.

Let x now represent the generating set S. Since |G |/2 < |S| < |G | the number of
binary variables is linear (instead of quadratic) in the number of vertices!

The groups C3×C×8
2 and C3×C×6

2 give the improved upper bounds for m4,4 and m5,5.
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3. Beyond the Ramsey multiplicity of quadrangles

Off-diagonal Ramsey Multiplicity

Question. Determining m3,3 is easy, but even m4,4 has been unresolved for over 60
years. Can we say more when studying the off-diagonal variant where s 6= t?
A famous result of Reiher from 2016 implies that m2,t = 1/(t − 1).

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

m3,4 = 689 · 3−8 and any large enough graph G admits a strong homomorphism into
the Schläfli graph after changing at most O(k3(G) + k4(G)−m3,4) v(G)2 edges.

The fact that we can show stability proves that the search heuristic found
a unique global optimum over all graphs of order 27!
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3. Beyond the Ramsey multiplicity of quadrangles

Remarks and Open Problems

• One can also study other variants of the Ramsey multiplicity problem, for example
for hypergraphs, additive structures, structures in finite geometry ...

• For many other problems the (current best) upper bounds come from
blow-up-esque constructions: the capset problem, the Sunflower conjecture,
Turán’s (3, 4)-conjecture, the Shannon Capacity of odd cycles ...

• One can more fundamentally ask when such constructions are optimal, e.g., do we
always have ms,t = minG∈G◦ k◦s (G) + k◦t (G) for the Ramsey multiplicity problem?
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Thank you for your attention!
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