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Three results and three perspectives

1. Approximation
Constructions in combinatorics via neural networks [12]

2. Generalization
Advancing mathematics by guiding human intuition with Al [5]

3. Emergence
Autoformalization with large language models [13]

4. Pointers for your own research
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Approximation

Let us assume we are using RelU activation, that is g(x) = max(x, 0).

Universal Approximation Theorem

Any continuous function with compact support can be approximated
arbitrarily closely by a 2-layer perceptron.
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Let us assume we are using RelU activation, that is g(x) = max(x, 0).

Universal Approximation Theorem

Any continuous function with compact support can be approximated
arbitrarily closely by a 2-layer perceptron.

Under additional assumptions it can also be approximated by a (not
necessarily 2-layer) perceptron with width at most dimension of the input.

See Shen et al. [11] for a study of the optimal depth-width-tradeoff.
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Approximation

Let us assume we are using RelU activation, that is g(x) = max(x, 0).

Universal Approximation Theorem

Any continuous function with compact support can be approximated
arbitrarily closely by a 2-layer perceptron.

Under additional assumptions it can also be approximated by a (not
necessarily 2-layer) perceptron with width at most dimension of the input.

See Shen et al. [11] for a study of the optimal depth-width-tradeoff.

Question

How few layers can a multilayer perceptron have that exactly models
a specific function, e.g,, the maximum of its input? See Hertrich et al. [8]
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Approximation

The answer to many mathematical questions is given by one object...

Sphere packing
What is the densest arrangement of congruent
spheres in Euclidean space?
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Sphere packing
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What is the maximum edge density of a graph
without triangles?

The Role of Machine Learning for Mathematics 4
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The answer to many mathematical questions is given by one object...

Sphere packing
What is the densest arrangement of congruent
spheres in Euclidean space?

Hadwiger Nelson
How many colors do you need such that no two
points at unit distance have the same color?

Mantel’'s Theorem
What is the maximum edge density of a graph
without triangles?

Idea. Somehow get a neural network to represent these objects.
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Approximation

ad I X1V > math > arXiv:2104.14516

Mathematics > Combinatorics
[Submitted on 29 Apr 2021]
Constructions in combinatorics via neural networks

Adam Zsolt Wagner

We demonstrate how by using a reinforcement learning algorithm, the deep cross-
entropy method, one can find explicit constructions and counterexamples to several
open conjectures in extremal combinatorics and graph theory. Amongst the
conjectures we refute are a question of Brualdi and Cao about maximizing permanents
of pattern avoiding matrices, and several problems related to the adjacency and
distance eigenvalues of graphs.
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Approximation

Represent discrete objects such as graphs or 0-1-matrices
through binary vectors and define a cost function.
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Model a distribution over these vectors through a neural
network evaluated in a round-based fashion.
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Approximation

Represent discrete objects such as graphs or 0-1-matrices
through binary vectors and define a cost function.

/\ — 101

Model a distribution over these vectors through a neural
network evaluated in a round-based fashion.
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Update the parameters of the neural network through
Reinforcement Learning to incentivise lower cost.
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Any connected graph on n vertices with bl =
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Generalization

More commonly, machine learning applications are (or at least used
to be) supervised regression or classification tasks on datasets:
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Generalization

More commonly, machine learning applications are (or at least used
to be) supervised regression or classification tasks on datasets:

R262 144

—  {0,1}

Universal approximation tells us that we can fit any dataset, even
random noise! Why would this generalize to any actual application?
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Generalization

Classical statistics emphasizes sim-
ple models, guarantees, assump-
tions about the data, and inter-
pretability of the output.
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Classical statistics emphasizes sim-
ple models, guarantees, assump-
tions about the data, and inter-
pretability of the output.

Big Data relies on overparameter-
ization, offers little formal guaran-
tees or interpretability, and accepts
behavior like adversarial examples.
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Classical statistics emphasizes sim- THIS 1S YOUR MACHINE LEARNING SYSTEM?

ple models, guarantees, assump- YUP! YOU POUR THE DATA INTO THIS BIG
tions about the data, and inter- %fafsfﬁ”ﬁ?oﬁ%@ggggmr
pretability of the output. WHAT IF THE ANSLERS ARE. LIRONG? )

Bic Data reli n rparam r- JUST STIR THE PILE UNTIL

ig Data relies on overparamete SHEY SR LOOKNG RIGHT

ization, offers little formal guaran-
tees or interpretability, and accepts
behavior like adversarial examples

Generalization is achieved through
many practical tools, but the cur-
rent state of machine learning has
been likened to alchemy. Ali Rahimi
at NeurlPS 2017

xkcd.com

The Role of Machine Learning for Mathematics 9



Generalization

nature

Advancing mathematics by guiding human intuition
with Al

Alex Davies &, Petar Veli¢kovié, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomasev, Richard

Tanburn, Peter Battaglia, Charles Blundell, Andras Juhasz, Marc Lackenby, Geordie Williamson, Demis

Hassabis & Pushmeet Kohli

Nature 600, 70-74 (2021) | Cite this article

256k Accesses | 102 Citations | 1607 Altmetric | Metrics

Two collaborations from Google DeepMind with Andras Juhasz and Marc
Lackenby (knot theory) and Geordie Williamson (representation theory).



Generalization
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Generalization

A knot is an embedding of the S' into
R3. Two knots equivalent if they can con-
tinuously be deformed into each other.
An invariant is a function on equivalence
classes of knots.
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Juhasz and Lackenby believed in an undiscovered relation between
geometric and algebraic varieties.
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A knot is an embedding of the S into Q@@@@
R3. Two knots equivalent if they can con- fk A
0 X INFE X
tinuously be deformed into each other. %Eéx @69 Q\Q
An invariant is a function on equivalence  sAx (<) 2 2y <D
) &P &
classes of knots. @5 C\{\J) (é) Qf/ f

Juhasz and Lackenby believed in an undiscovered relation between
geometric and algebraic varieties.

geometric varieties algebraic varieties
Meridional translation
Longitudinal translation Signature

Short geodesic _— Jones polynomial
Injectivity radius
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Generalization

A knot is an embedding of the S into Q@@@@
R3. Two knots equivalent if they can con- fk A
0 X INFE X
tinuously be deformed into each other. %Eéx @69 Q\Q
An invariant is a function on equivalence  sAx (<) 2 2y <D
) &P &
classes of knots. @5 C\{\J) (é) Qf/ f

Juhasz and Lackenby believed in an undiscovered relation between
geometric and algebraic varieties.

geometric varieties algebraic varieties
Meridional translation Neural
Longitudinal translation Network Signature

Short geodesic _— Jones polynomial
Injectivity radius
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a b
Im(Meridional translation) 200
Longitudinal translation 30
Re(Meridional translation) 175
)
_E Im(Short geodesic) 150
4 Injectivity radius
£ c | ° 125
e usp volume H
“E’ Symmetry group g 100
é Torsion degree @ 04 . 'ﬁ?‘?:‘,;:‘:‘ = 2
) Re(Short geodesic) = -
o
x Volume _204 swe 50
Chern-Simons 25
Adjoint torsion degree =301
f T T T T T T T T
0 02 04 06 08 1.0 -1 0 1

Normalized attribution score
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Generalization

Im(Meridional translation)
Longitudinal translation 30
Re(Meridional translation)

)
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b o
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Adjoint torsion degree =301
f T T T T T T T T
0 02 04 06 08 10 -1 0 1

Normalized attribution score

Based on this, it was conjectured that

Meridional translation (real)

| 20(K) — Re (A(K)/u(K)) | < c1vol(K) + ¢,
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Based on this, it was conjectured that
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Generalization

Im(Meridional translation) 2
Longitudinal translation 30
Re(Meridional translation)
"‘g Im(Short geodesic) 201
-E Injectivity radius 104
° Cusp volume %
“’é’ Symmetry group g} 0+
(% Torsion degree @ 04
= Re(Short geodesic)
< Volume -20 4
Chern-Simons
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Based on this, it was conjectured that

Meridional translation (real)

~—Rali—Re Yk H—~<ervolk)~+—e—
| 20(K) — Re (A(K)/p(K)) | < cvol(K) inj(K)~

which was turned into a theorem in a separate publication [4]!
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Emergence

Over the last few years we have increasingly seen systems
transcending big data with capabilities that verge on emergence.

The Role of Machine Learning for Mathematics 13



Emergence

Over the last few years we have increasingly seen systems
transcending big data with capabilities that verge on
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Emergence

Over the last few years we have increasingly seen systems
transcending big data with capabilities that verge on emer:

What would be an easy way of having a gitlab (privately hosted at git.zib.de) CI/CD workflow
send messages to a particular channel on Slack?

You can use Slack's Incoming Webhooks to send messages from your GitLab CI/CD pipeline 0 &9 &P
to a Slack channel. Here's a quick outline:

1. Create an Incoming Webhook in Slack and get the Webhook URL.
2. Add the Webhook URL as a secret variable in your GitLab project settings.

3. Update your " .gitlab-ci.yml" to send a message using "curl".
Example ~.gitlab-ci.yml" snippet:

yaml () Copycode

Replace “$SLACK_WEBHOOK_URL * with the secret variable you added in GitLab.

The Role of Machine Learning for Mathematics
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Why has theoretical math not been affected by this (yet)?
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that do not transcend the quality of their input. Unlike (some)
humans, they do not internally reason before answering.
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Why has theoretical math not been affected by this (yet)?

Large Language Models (LLMs) have been called stochastic parrots
that do not transcend the quality of their input. Unlike (some)
humans, they do not internally reason before answering.

Computation has seemingly gone from precise output when given
precise input to accepting fuzzy input at the cost of fuzzy output.
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Why has theoretical math not been affected by this (yet)?

Large Language Models (LLMs) have been called stochastic parrots
that do not transcend the quality of their input. Unlike (some)
humans, they do not internally reason before answering.

Computation has seemingly gone from precise output when given
precise input to accepting fuzzy input at the cost of fuzzy output.

But this story is not entirely true ...
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NeurlPS Proceedings +# &

Autoformalization with Large Language Models

Part of Advances in Neural Information Processing Systems 35 (NeurlPS 2022) Main Conference Track

Bibtex Supplemental

Authors

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, Christian Szegedy
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{ 3\
. e N
gase Eltlidy 2 Questlol.n: . "Wh i Case Study 3 Question:
atur. anguage v er,smn. en a Natural language version: "Let f be a linear
the girls at Madeline’s school line up function for which £(6) — f(2) = 12. What is
in rows ‘of eight, thet:e are seven left F(12) — f(2)? The final answer is 30." Trans-
over. If instead they line up in rows of late the natural language version to an Isabelle
Sfour, how many are left over? The final version:
answer is 3." Translate the natural lan-
guage version to an Isabelle version: Codex output:
theorem
E;gz[e(:ltput. fixes f :: "real \<Rightarrow>real"
R 3 SR assumes "linear £"
assumes "nmod 8=7" HE-gz= i
shows "nmod 4 = 3" shows "f 12 - £ 2=30"
| 7/

\ J

Figure 3: Autoformalizations from natural language to Isabelle code. Left: Case study 2 — perfect
formalization by PaLM. Right: Case study 3 — incorrect formalization by Codex.

Machine learning approaches to directly create proofs in formal
language exist [10] and are improving along with LLM advances ...
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Pointers for your own research

- Implementing a machine learning approach is often hard for
entirely different reasons than mathematics is hard and can
require a lot of resources and time.

The Role of Machine Learning for Mathematics 17



Pointers for your own research

- Implementing a machine learning approach is often hard for
entirely different reasons than mathematics is hard and can
require a lot of resources and time.

- You should know in advance if you care about the application or
the method and if you want a general purpose or a
problem-specific approach.
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- Discrete black-box optimization has been studied since the 60s
with effective approaches like Simmulated Annealing [9]. They
have been extensively used to find objects like Ramsey colorings.
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- Implementing a machine learning approach is often hard for
entirely different reasons than mathematics is hard and can
require a lot of resources and time.

- You should know in advance if you care about the application or
the method and if you want a general purpose or a
problem-specific approach.

- If you end up publicizing your method, be aware of existing
approaches beyond Machine Learning:
- Discrete black-box optimization has been studied since the 60s

with effective approaches like Simmulated Annealing [9]. They
have been extensively used to find objects like Ramsey colorings.

- Graffiti [6] or AutoGraphiX [7] have been formulating and refuting
conjectures in extremal graph theory since the 80s.

The Role of Machine Learning for Mathematics 17



References

[1]

M. Aouchiche and P. Hansen.
A survey of automated conjectures in spectral graph theory.
Linear algebra and its applications, 432(9):2293-2322, 2010.

M. Aouchiche and P. Hansen.
Proximity, remoteness and distance eigenvalues of a graph.
Discrete Applied Mathematics, 213:17-25, 2016.

R. A. Brualdi and L. Cao.
Pattern-avoiding (0, 1)-matrices.
arXiv preprint arXiv:2005.00379, 2020.

A. Davies, A. Juhasz, M. Lackenby, and N. Tomasev.
The signature and cusp geometry of hyperbolic knots.
arXiv preprint arXiv:2111.15323, 2021.

The Role of Machine Learning for Mathematics 18



References

[5] A. Davies, P. Velickovic, L. Buesing, S. Blackwell, D. Zheng,
N. TomasSev, R. Tanburn, P. Battaglia, C. Blundell, A. Juhasz, et al.
Advancing mathematics by guiding human intuition with ai.
Nature, 600(7887):70-74, 2021.

[6] S. Fajtlowicz.
On conjectures of graffiti.
In Annals of Discrete Mathematics, volume 38, pages 113-118.
Elsevier, 1988.

[7] P Hansen and G. Caporossi.
Autographix: An automated system for finding conjectures in
graph theory.
Electronic Notes in Discrete Mathematics, 5:158-161, 2000.

The Role of Machine Learning for Mathematics 19



References

[8] C.Hertrich, A. Basu, M. Di Summa, and M. Skutella.
Towards lower bounds on the depth of relu neural networks.
Advances in Neural Information Processing Systems,
34:3336-3348, 2021.

[9] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi.
Optimization by simulated annealing.
science, 220(4598):671-680, 1983.

[10] S. Polu and I. Sutskever.
Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

The Role of Machine Learning for Mathematics 20



References

[11]

Z.Shen, H. Yang, and S. Zhang.

Optimal approximation rate of relu networks in terms of width
and depth.

Journal de Mathématiques Pures et Appliquées, 157:101-135, 2022.

A. Z. Wagner.
Constructions in combinatorics via neural networks.
arXiv preprint arXiv:2104.14516, 2021.

Y. Wu, A. Q. Jiang, W. Li, M. Rabe, C. Staats, M. Jamnik, and
C. Szegedy.

Autoformalization with large language models.
Advances in Neural Information Processing Systems,
35:32353-32368, 2022.

The Role of Machine Learning for Mathematics 21



	Approximation   Constructions in combinatorics via neural networks wagner2021constructions
	Generalization   Advancing mathematics by guiding human intuition with AI davies2021advancing
	Emergence   Autoformalization with large language models wu2022autoformalization
	Pointers for your own research

