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INTRODUCTION VDW GAMES PROOFS REMARKS

Maker-Breaker Positional Games

Definition (Maker-Breaker Games)

1. Let F be hypergraph. In the Maker-Breaker game played on F there
are two players, Maker and Breaker, alternately picking elements
of V(F).

Maker wins if he completes a winning set F ∈ F .
Breaker wins if he can keep Maker from achieving this goal.

2. In the biased Maker-Breaker game, Breaker is allowed to occupy
q ≥ 1 moves each turn. The bias threshold is the value q0 such that
Breaker has a winning strategy for q ≥ q0 and does not for q < q0.

Theorem (Erdős-Selfridge ’73, Beck ’82)
If
∑

F∈F (1 + q)−|F| < 1/(1 + q) then the game is a Breaker’s win and the
winning strategy is given by an efficient deterministic algorithm.

There is also a much weaker, rarely used Maker’s criterion due to Beck.
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Theorem (Erdős-Selfridge ’73, Beck ’82)
If
∑

F∈F (1 + q)−|F| < 1/(1 + q) then the game is a Breaker’s win and the
winning strategy is given by an efficient deterministic algorithm.

There is also a much weaker, rarely used Maker’s criterion due to Beck.



INTRODUCTION VDW GAMES PROOFS REMARKS

Maker-Breaker Positional Games

Example (Connectivity Game)
The board of the connectivity game is E(Kn) and the winning sets consist
of all connected spanning subgraphs of Kn.

There is a simple explicit
winning strategy for Maker for all n. The bias threshold satisfies
q0 = Θ

(
n/ ln n

)
.

Example (Triangle Game)
The board of the triangle game is E(Kn) and the winning sets are all
triangles. Simple explicit strategies show that the bias threshold
satisfies q0 = Θ

(
n1/2

)
.

Example (van der Waerden Game – Beck ’81)
Van der Waerden games are the positional games played on the board
[n] = {1, . . . ,n}with all k-AP as winning sets.
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Van der Waerden Games

Definition (Beck ’81)
For a given k ≥ 3 let W?(k) denote the smallest integer n for which
Maker has a winning strategy in the respective van der Waerden game.

Remark
Let W(k) denote the van der Waerden Number. By van der Waerden’s
Theorem Breaker must occupy a k-AP for himself if he wants to win. A
standard strategy stealing argument therefore gives us W?(k) ≤W(k).

Theorem (Beck ’81)
We have W?(k) = 2k(1+o(1)).

What about the biased version?



INTRODUCTION VDW GAMES PROOFS REMARKS

Van der Waerden Games

Definition (Beck ’81)
For a given k ≥ 3 let W?(k) denote the smallest integer n for which
Maker has a winning strategy in the respective van der Waerden game.

Remark
Let W(k) denote the van der Waerden Number. By van der Waerden’s
Theorem Breaker must occupy a k-AP for himself if he wants to win. A
standard strategy stealing argument therefore gives us W?(k) ≤W(k).

Theorem (Beck ’81)
We have W?(k) = 2k(1+o(1)).

What about the biased version?



INTRODUCTION VDW GAMES PROOFS REMARKS

Van der Waerden Games

Definition (Beck ’81)
For a given k ≥ 3 let W?(k) denote the smallest integer n for which
Maker has a winning strategy in the respective van der Waerden game.

Remark
Let W(k) denote the van der Waerden Number. By van der Waerden’s
Theorem Breaker must occupy a k-AP for himself if he wants to win. A
standard strategy stealing argument therefore gives us W?(k) ≤W(k).

Theorem (Beck ’81)
We have W?(k) = 2k(1+o(1)).

What about the biased version?



INTRODUCTION VDW GAMES PROOFS REMARKS

Van der Waerden Games

Definition (Beck ’81)
For a given k ≥ 3 let W?(k) denote the smallest integer n for which
Maker has a winning strategy in the respective van der Waerden game.

Remark
Let W(k) denote the van der Waerden Number. By van der Waerden’s
Theorem Breaker must occupy a k-AP for himself if he wants to win. A
standard strategy stealing argument therefore gives us W?(k) ≤W(k).

Theorem (Beck ’81)
We have W?(k) = 2k(1+o(1)).

What about the biased version?



INTRODUCTION VDW GAMES PROOFS REMARKS

Van der Waerden Games

Proposition
The threshold bias of the 3-AP game played on [n] satisfies√

n
12
− 1

6
≤ q0(n) ≤

√
3n.

Proof.
Breaker. At round i Breaker covers all 3(i− 1) possibilities that Maker
could combine his previous move with any of his other moves in order
to form a 3-AP. Since i ≤ n/(q + 1) Breaker can do so if q(q + 1) ≥ 3n,
which is the case if q ≥

√
3n.

Maker. Use Beck’s Maker criterion.

What about more general additive structures?
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Van der Waerden Games

Definition (Abundant Matrices)
Given some matrix A ∈ Zr×m we call it

(i) positive if there are solutions whose entries are positive,

(ii) abundant if every submatrix obtained from A by deleting two
columns has the same rank as A.

Definition (Maximum 1-density)
For ∅ ⊆ Q ⊆ [m], let AQ denote the matrix keeping only columns
indexed by Q and let rQ = rk(A)− rk(AQ). The maximum 1-density of
an abundant matrix A ∈ Zr×m is defined as

m1(A) = max
Q⊆[m]
2≤|Q|

|Q| − 1
|Q| − rQ − 1

. (1)
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Example (Schur triple)
The matrix associated with Schur triple is given by

ASchur =
(
1 1 −1

)
∈ Z1×3. (2)

ASchur is abundant and we have m1(ASchur) = 2.

Example (Arithmetic Progressions)
The matrix associated with a k-term arithmetic progression is given by

Ak-AP =


1 −2 1

1 −2 1
...

1 −2 1

 ∈ Z(k−2)×k. (3)

Ak-AP is abundant and we have m1(Ak-AP) = k− 1.

Remark (Density and Partition Regularity)(
1 1 −2

)
is density regular and

(
1 1 −1

)
is partition regular.

However,
(
1 1 −3

)
is abundant but neither density nor partition regular.
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van der Waerden Games

Definition
Given any matrix A ∈ Zr×m let the corresponding generalized van der
Waerden Game be the Maker-Breaker positional game with [n] as the
board and {x ∈ [n]m : A · xT = 0T, xi 6= xj} as the winning sets.

Theorem (Kusch, Rué, S. and Szabó ’17)
For all positive and abundant matrices A ∈ Zr×m the bias threshold of
the above game satisfies q0(n) = Θ

(
n1/m1(A)

)
. The bias threshold of

non-positive or non-abundant matrices satisfies q0(n) = Θ
(
1
)
.

Corollary
For van der Waerden games the threshold is Θ

(
n1/(k−1)

)
for k ≥ 3.

There are also a results allowing some repeated entries and results dealing
with the inhomogeneous case.
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Proof Outline

Bednarska and Łuczak ’00 studied the bias threshold of the Maker-
Breaker game consisting of all copies of a given small graph G in Kn.

1. Maker’s strategy is obtained by playing randomly and applying a
Lemma on random graphs due to Janson, Łuczak and Ruciński.

2. Breaker’s strategy is obtained by splitting up the bias and
simultaneously following multiple strategies given by the
Erdős-Selfridge criterion to avoid ’clustering’.

In our paper we extend the ideas behind their proof to obtain general
Maker and Breaker Win Criteria and apply them to the van der Waerden
games. These General criteria also allow one to generalize the result of
Bednarska and Łuczak to hypergraphs of higher uniformity.

Here I will use the stronger ingredient of a probabilistic Ramsey statement for
Maker’s part and give an outline of the proof for Breaker’s strategy.
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Maker’s Strategy: playing randomly

Theorem (Schacht; Conlon and Gowers ’10)
For all positive and density regular A ∈ Zr×m and ε > 0 there exist c,C:

lim
n→∞

P
(
[n]p →ε A

)
=

{
0 if p(n) ≤ c n−1/m1(A),

1 if p(n) ≥ C n−1/m1(A).

Definition
Given A ∈ Zr×m let ex(n,A) be the cardinality of the largest
solution-free subset of [n] and define π(A) = limn→∞ ex(n,A)/n.
Every positive and abundant matrix satisfies π(A) < 1.

Theorem (Hancock, Staden and Treglown ’17+; S. ’17+)
For every positive and abundant matrix A ∈ Zr×m and ε > π(A) there
exist constants c(A, ε),C(A, ε) > 0 such that

lim
n→∞

P
(
[n]p →ε A

)
=

{
0 if p(n) ≤ c n−1/m1(A),

1 if p(n) ≥ C n−1/m1(A).
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INTRODUCTION VDW GAMES PROOFS REMARKS

Maker’s Strategy: playing randomly

Proof.
Let an arbitrary strategy for Breaker be fixed.

1. Each round, Maker makes his move uniformly at random from
among all elements of [n] that he hasn’t previously picked. If this
element was already occupied by Breaker, he forfeits this move
and we call it a failure.

2. Pick an arbitrary ε > π(A) and let C = C(A, ε) be as given by the
previous theorem. Set δ = (1− ε)/2 and let q < δ/(2C) n1/m1(A).

3. Stop after M = δ bn/(q + 1)c rounds so that Maker’s picks
resemble a random graph [n]M where M ≥ 2C n1−1/m1(A).

4. We have P (Maker’s ith move is a failure) ≤ δ, so by Markov’s
inequality w.h.p. at least an ε fraction of his picks weren’t failures.

5. By the previous result, Maker’s random response succeeds a.a.s.
so that there must exist a deterministic winning strategy.
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Breaker’s Strategy: avoiding cluster ing

We need to aim at blocking some dominating substructure.

Let Q1 ⊆
[m] be a set of column indices satisfying |Q1| ≥ 2 such that

(|Q1| − 1)/(|Q1| − rQ1 − 1) = m1(A) (4)

and |Q1| is as small as possible. Consider the matrix A[Q1]:

A ∼=

 ————
A[Q1] 0

∣∣
0 0

∣∣

]

rk(A)− rQ1

∣∣]
rQ1

∣∣]
r− rk(A)

∣∣ (5)

A[Q1] is positive and abundant. Furthermore, blocking solutions to
A[Q1] also blocks solutions to A:

Lemma
Let T ⊂ N and Q1 ⊆ [m] as above. If there does not exist a solution to
A[Q1] · xT = 0T in T then there also does not exist a solution to A · xT = 0T.
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Breaker’s Strategy: avoiding cluster ing

Remark (Strategy Splitting)
If Breaker has a winning strategy inH1 andH2 with a bias of q1 and q2

respectively, then he has a winning strategy inH1 ∪H2 with a bias of q1 + q2.

Definition
LetHn be the hypergraph of all proper solutions to A · x = 0 in [n].

1. A t-cluster is any family of distinct edges {H1, . . . ,Ht} ⊂ Hn

satisfying |
⋂t

i=1 Hi| ≥ 1,

2. an almost complete solution is a tuple (H◦, h) consisting of a set
H◦ ⊆ V(Hn) as well as h /∈ H◦ so that H = H◦ ∪ {h} ∈ Hn,

3. a t-fan is a family of distinct almost complete solutions
{(H◦1 , h1), . . . , (H◦t , ht)} inHn satisfying |

⋂t
i=1 H◦i | ≥ 1.

An almost complete solution (H◦, h) is dangerous if H◦ has been
covered by Maker and h has not yet been picked by either player. A
fan is dangerous if its respective almost complete solutions are.



INTRODUCTION VDW GAMES PROOFS REMARKS

Breaker’s Strategy: avoiding cluster ing

Remark (Strategy Splitting)
If Breaker has a winning strategy inH1 andH2 with a bias of q1 and q2

respectively, then he has a winning strategy inH1 ∪H2 with a bias of q1 + q2.

Definition
LetHn be the hypergraph of all proper solutions to A · x = 0 in [n].

1. A t-cluster is any family of distinct edges {H1, . . . ,Ht} ⊂ Hn

satisfying |
⋂t

i=1 Hi| ≥ 1,

2. an almost complete solution is a tuple (H◦, h) consisting of a set
H◦ ⊆ V(Hn) as well as h /∈ H◦ so that H = H◦ ∪ {h} ∈ Hn,

3. a t-fan is a family of distinct almost complete solutions
{(H◦1 , h1), . . . , (H◦t , ht)} inHn satisfying |

⋂t
i=1 H◦i | ≥ 1.

An almost complete solution (H◦, h) is dangerous if H◦ has been
covered by Maker and h has not yet been picked by either player. A
fan is dangerous if its respective almost complete solutions are.



INTRODUCTION VDW GAMES PROOFS REMARKS

Breaker’s Strategy: avoiding cluster ing

Remark (Strategy Splitting)
If Breaker has a winning strategy inH1 andH2 with a bias of q1 and q2

respectively, then he has a winning strategy inH1 ∪H2 with a bias of q1 + q2.

Definition
LetHn be the hypergraph of all proper solutions to A · x = 0 in [n].

1. A t-cluster is any family of distinct edges {H1, . . . ,Ht} ⊂ Hn

satisfying |
⋂t

i=1 Hi| ≥ 1,

2. an almost complete solution is a tuple (H◦, h) consisting of a set
H◦ ⊆ V(Hn) as well as h /∈ H◦ so that H = H◦ ∪ {h} ∈ Hn,

3. a t-fan is a family of distinct almost complete solutions
{(H◦1 , h1), . . . , (H◦t , ht)} inHn satisfying |

⋂t
i=1 H◦i | ≥ 1.

An almost complete solution (H◦, h) is dangerous if H◦ has been
covered by Maker and h has not yet been picked by either player. A
fan is dangerous if its respective almost complete solutions are.



INTRODUCTION VDW GAMES PROOFS REMARKS

Breaker’s Strategy: avoiding cluster ing

Remark (Strategy Splitting)
If Breaker has a winning strategy inH1 andH2 with a bias of q1 and q2

respectively, then he has a winning strategy inH1 ∪H2 with a bias of q1 + q2.

Definition
LetHn be the hypergraph of all proper solutions to A · x = 0 in [n].

1. A t-cluster is any family of distinct edges {H1, . . . ,Ht} ⊂ Hn

satisfying |
⋂t

i=1 Hi| ≥ 1,

2. an almost complete solution is a tuple (H◦, h) consisting of a set
H◦ ⊆ V(Hn) as well as h /∈ H◦ so that H = H◦ ∪ {h} ∈ Hn,

3. a t-fan is a family of distinct almost complete solutions
{(H◦1 , h1), . . . , (H◦t , ht)} inHn satisfying |

⋂t
i=1 H◦i | ≥ 1.

An almost complete solution (H◦, h) is dangerous if H◦ has been
covered by Maker and h has not yet been picked by either player. A
fan is dangerous if its respective almost complete solutions are.
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Breaker’s Strategy: avoiding cluster ing

Remark (Strategy Splitting)
If Breaker has a winning strategy inH1 andH2 with a bias of q1 and q2
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Breaker’s Strategy: avoid cluster ing

Proposition
For all positive and abundant matrices A ∈ Zr×m Breaker wins the associated
van der Waerden game with a bias of q� n1/m1(A).

Proof.
1. Using the Erdős-Selfridge criterion, Breaker has a strategy that

avoids t-clusters using some fraction the bias q′ = q/(t + 1)− 1
where t = t(A) ∈ N is a large constant.

2. The same strategy must also avoid dangerous t (q′ + 1)-fans.

3. Using the remaining q− q′ ≥ t (q′ + 1) moves it follows
inductively that each round Breaker can neutralise every
dangerous almost complete solution and hence win.

To get to the correct threshold, one combines a strategy as above aimed at
structures intersecting in at least 2 points with another application of
Erdős-Selfridge aimed at structures intersecting in exactly 1 point. One
then combines the two results through an auxiliary lemma.
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Open Question

Q1. Can one obtain good bounds for the constants?

Conjecture
For all positive and abundant matrices A ∈ Zr×m there exists a constant
c = c(A) such that for ε > 0 and n large enough Breaker has a winning
strategy with a bias of q > (c + ε) n1/m1(A) and Maker has a winning
strategy if q < (c− ε) n1/m1(A).

Q2. Can one formulate an explicit winning strategy for Maker?
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Thank you for your attention!
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