

Towards Flag Algebras in Additive Combinatorics

CANT 2023 at CUNY

Juanjo Rué Perna and Christoph Spiegel

24th of May 2023

Towards Flag Algebras in Additive Combinatorics

f 1. The Rado Multiplicity Problem

2. Lower bounds through Flag algebras in $\mathbb{F}_{q_1}^n$

3. Constructive upper bounds through blow-ups

4. Outlook

1. The Rado Multiplicity Problem

Definition of the problem

Given a **coloring** $\gamma : \mathbb{F}_q^n \to [c]$ and linear map L, we are interested in $\mathcal{S}_L(\gamma) \stackrel{\text{def}}{=} \{ \mathbf{s} \in (\mathbb{F}_q^n)^m : L(\mathbf{s}) = \mathbf{0}, s_i \neq s_j \text{ for } i \neq j, \mathbf{s} \in \gamma^{-1}(\{i\})^m \text{ for some } i \}.$ (1)

Rado (1933) tells us that $S_L(\gamma) \neq \emptyset$ for large enough *n* if *L* satisfies *column condition*.

The Rado Multiplicity Problem is concerned with determining

$$m_{q,c}(L) \stackrel{\text{def}}{=} \lim_{n \to \infty} \min_{\gamma \in \Gamma(n)} |\mathcal{S}_L(\gamma)| / |\mathcal{S}_L(\mathbb{F}_q^n)|.$$

Limit exists by monotonicity and $0 < m_{q,c}(L) \le 1$ if L is partition regular. L is c-common if $m_{q,c}(L) = c^{1-m}$ (the value attained in a uniform random coloring).

This reminds us of an old question of Erdős in graph theory ...

1. The Rado Multiplicity Problem

Definition of the problem

Given a **coloring** $\gamma : \mathbb{F}_q^n \to [c]$ and linear map L, we are interested in $\mathcal{S}_L(\gamma) \stackrel{\text{def}}{=} \{ \mathbf{s} \in (\mathbb{F}_q^n)^m : L(\mathbf{s}) = \mathbf{0}, s_i \neq s_i \text{ for } i \neq j, \mathbf{s} \in \gamma^{-1}(\{i\})^m \text{ for some } i \}.$ (1)

Rado (1933) tells us that $S_L(\gamma) \neq \emptyset$ for large enough *n* if *L* satisfies *column condition*.

The Rado Multiplicity Problem is concerned with determining

$$m_{q,c}(L) \stackrel{\text{def}}{=} \lim_{n \to \infty} \min_{\gamma \in \Gamma(n)} |\mathcal{S}_L(\gamma)| / |\mathcal{S}_L(\mathbb{F}_q^n)|.$$

Limit exists by monotonicity and $0 < m_{q,c}(L) \le 1$ if L is partition regular. L is c-common if $m_{q,c}(L) = c^{1-m}$ (the value attained in a uniform random coloring).

This reminds us of an old question of Erdős in graph theory ...

1. The Rado Multiplicity Problem

Definition of the problem

Given a **coloring** $\gamma : \mathbb{F}_q^n \to [c]$ and linear map L, we are interested in $\mathcal{S}_L(\gamma) \stackrel{\text{def}}{=} \{ \mathbf{s} \in (\mathbb{F}_q^n)^m : L(\mathbf{s}) = \mathbf{0}, s_i \neq s_i \text{ for } i \neq j, \mathbf{s} \in \gamma^{-1}(\{i\})^m \text{ for some } i \}.$ (1)

Rado (1933) tells us that $S_L(\gamma) \neq \emptyset$ for large enough *n* if *L* satisfies *column condition*.

The Rado Multiplicity Problem is concerned with determining

$$m_{q,c}(L) \stackrel{\text{def}}{=} \lim_{n \to \infty} \min_{\gamma \in \Gamma(n)} |\mathcal{S}_L(\gamma)| / |\mathcal{S}_L(\mathbb{F}_q^n)|.$$

Limit exists by monotonicity and $0 < m_{q,c}(L) \le 1$ if L is partition regular. L is *c*-common if $m_{q,c}(L) = c^{1-m}$ (the value attained in a uniform random coloring).

This reminds us of an old question of Erdős in graph theory ...

- Graham et al. (1996) gave lower bound for **Schur triples** in 2-colorings of [*n*], later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.
- Cameron et al. (2007) showed that the nr. of solutions for linear equations with **an odd nr. of variables** only depends on cardinalities of the two color classes.
- Parrilo, Robertson and Saracino (2008) established bounds for the minimum number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in ℕ).
- For r = 1 and m even, Saad and Wolf (2017) showed that any 'pair-partitionable' L is 2-common in ℝⁿ_q. Fox, Pham, and Zhao (2021) showed that this is necessary.
- Kamčev et al. (2021) characterized some non-common L in \mathbb{F}_{q}^{n} with r > 1.
- Král et al. (2022) characterized 2-common L for q = 2, r = 2, m odd.

- Graham et al. (1996) gave lower bound for **Schur triples** in 2-colorings of [*n*], later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.
- Cameron et al. (2007) showed that the nr. of solutions for linear equations with **an odd nr. of variables** only depends on cardinalities of the two color classes.
- Parrilo, Robertson and Saracino (2008) established bounds for the minimum number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in ℕ).
- For r = 1 and m even, Saad and Wolf (2017) showed that any 'pair-partitionable' L is 2-common in ℝⁿ_q. Fox, Pham, and Zhao (2021) showed that this is necessary.
- Kamčev et al. (2021) characterized some non-common L in \mathbb{F}_{q}^{n} with r > 1.
- Král et al. (2022) characterized 2-common L for q = 2, r = 2, m odd.

What can we contribute?

We are interested in particular L and fixed q. Analogous to e.g. determining Ramsey Multiplicity of K_4 for 2-uniform graphs (has a long history starting with Erdős in 1962).

Theorem (Rué and S., 2023)

We have $1/10 < m_{q=5,c=2}(L_{4-AP}) \le 0.1\overline{031746}$.

Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial l.b. known.

Proposition (Rué and S., 2023)

We have $m_{q=3,c=3}(L_{3-AP}) = 1/27$.

Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

- **Upper bounds** through (iterated) blow-up constructions of particular finite colorings.
- Lower bounds through an extension of the Flag Algebra framework of Razborov (2007) to Fⁿ_q.

What can we contribute?

We are interested in particular L and fixed q. Analogous to e.g. determining Ramsey Multiplicity of K_4 for 2-uniform graphs (has a long history starting with Erdős in 1962).

Theorem (Rué and S., 2023)

We have $1/10 < m_{q=5,c=2}(L_{4-AP}) \le 0.1\overline{031746}$.

Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial l.b. known.

Proposition (Rué and S., 2023)

We have $m_{q=3,c=3}(L_{3-AP}) = 1/27$.

Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

- **Upper bounds** through (iterated) blow-up constructions of particular finite colorings.
- Lower bounds through an extension of the Flag Algebra framework of Razborov (2007) to Fⁿ_g.

What can we contribute?

We are interested in particular L and fixed q. Analogous to e.g. determining Ramsey Multiplicity of K_4 for 2-uniform graphs (has a long history starting with Erdős in 1962).

Theorem (Rué and S., 2023)

We have $1/10 < m_{q=5,c=2}(L_{4-AP}) \le 0.1\overline{031746}$.

Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial l.b. known.

Proposition (Rué and S., 2023)

We have $m_{q=3,c=3}(L_{3-AP}) = 1/27$.

Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

- **Upper bounds** through (iterated) blow-up constructions of particular finite colorings.
- Lower bounds through an extension of the Flag Algebra framework of Razborov (2007) to Fⁿ_q.

What can we contribute?

We are interested in particular L and fixed q. Analogous to e.g. determining Ramsey Multiplicity of K_4 for 2-uniform graphs (has a long history starting with Erdős in 1962).

Theorem (Rué and S., 2023)

We have $1/10 < m_{q=5,c=2}(L_{4-AP}) \le 0.1\overline{031746}$.

Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial l.b. known.

Proposition (Rué and S., 2023)

We have $m_{q=3,c=3}(L_{3-AP}) = 1/27$.

Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

- Upper bounds through (iterated) blow-up constructions of particular finite colorings.
- Lower bounds through an extension of the Flag Algebra framework of Razborov (2007) to Fⁿ_q.

Towards Flag Algebras in Additive Combinatorics

 ${f 1}_{f \cdot}$ The Rado Multiplicity Problem

2. Lower bounds through Flag algebras in $\mathbb{F}_{q_1}^n$

3. Constructive upper bounds through blow-ups

2. Lower bounds through Flag algebras in \mathbb{F}_q^n

An improvement on a trivial lower bound

The parameter $s_L(\gamma) \stackrel{\text{def}}{=} |\mathcal{S}_L(\gamma)| / |\mathcal{S}_L(\mathbb{F}_q^n)|$ satisfies the averaging equality

$$s_{L}(\gamma) = \sum_{\delta \in \Gamma(k)} p(\delta, \gamma) \, s_{L}(\delta) + o(1) = \mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta) + o(1)$$
(2)

once k is large enough. This implies an immediate trivial lower bound of

$$m_{q,c}(L) \ge \min_{\delta \in \Gamma(k)} s_L(\delta).$$
(3)

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} a_{\delta} = o(1)$, we would get

$$m_{q,c}(L) \ge \min_{\delta \in \Gamma(k)} s_L(\delta) - a_{\delta}.$$
 (4)

2. Lower bounds through Flag algebras in \mathbb{F}_q^n

An improvement on a trivial lower bound

The parameter $s_L(\gamma) \stackrel{\text{def}}{=} |\mathcal{S}_L(\gamma)| / |\mathcal{S}_L(\mathbb{F}_q^n)|$ satisfies the averaging equality

$$s_{L}(\gamma) = \sum_{\delta \in \Gamma(k)} p(\delta, \gamma) \, s_{L}(\delta) + o(1) = \mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta) + o(1)$$
(2)

once k is large enough. This implies an immediate trivial lower bound of

$$m_{q,c}(L) \ge \min_{\delta \in \Gamma(k)} s_L(\delta).$$
(3)

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} a_{\delta} = o(1)$, we would get

$$m_{q,c}(L) \ge \min_{\delta \in \Gamma(k)} s_L(\delta) - a_{\delta}.$$
(4)

2. Lower bounds through Flag algebras in \mathbb{F}_q^n

An improvement on a trivial lower bound

The parameter $s_L(\gamma) \stackrel{\text{def}}{=} |\mathcal{S}_L(\gamma)| / |\mathcal{S}_L(\mathbb{F}_q^n)|$ satisfies the averaging equality

$$s_{L}(\gamma) = \sum_{\delta \in \Gamma(k)} p(\delta, \gamma) \, s_{L}(\delta) + o(1) = \mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta) + o(1)$$
(2)

once k is large enough. This implies an immediate trivial lower bound of

$$m_{q,c}(L) \ge \min_{\delta \in \Gamma(k)} s_L(\delta).$$
(3)

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}^{(\gamma)}_{\delta \in \Gamma(k)} a_{\delta} = o(1)$, we would get

$$m_{q,c}(L) \ge \min_{\delta \in \Gamma(k)} s_L(\delta) - a_{\delta}.$$
 (4)

2. Lower bounds through Flag algebras in \mathbb{F}_q^n

An improvement on a trivial lower bound

The parameter $s_L(\gamma) \stackrel{\text{def}}{=} |\mathcal{S}_L(\gamma)| / |\mathcal{S}_L(\mathbb{F}_q^n)|$ satisfies the averaging equality

$$s_{L}(\gamma) = \sum_{\delta \in \Gamma(k)} p(\delta, \gamma) \, s_{L}(\delta) + o(1) = \mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta) + o(1)$$
(2)

once k is large enough. This implies an immediate trivial lower bound of

$$m_{q,c}(L) \ge \min_{\delta \in \Gamma(k)} s_L(\delta).$$
(3)

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}^{(\gamma)}_{\delta \in \Gamma(k)} a_{\delta} = o(1)$, we would get

$$m_{q,c}(L) \ge \min_{\delta \in \Gamma(k)} s_L(\delta) - a_{\delta}.$$
 (4)

2. Lower bounds through Flag algebras in \mathbb{F}_q^n **The SDP approach**

Definition

The *flag algebra* (of the empty type) A is given by considering $\mathbb{R}\Gamma$, factoring out relations given by the averaging equality and defining an appropriate product.

There exists an element $C_L \in \mathcal{A}$ capturing the behavior of s_L and the *semantic cone*

$$S = \{ f \in \mathcal{A} : \phi(f) \ge 0 \text{ for all } \phi \in \operatorname{Hom}^+(\mathcal{A}, \mathbb{R}) \}$$
(5)

captures those algebraic expressions corresponding to density expressions that are 'true'. We can therefore establish a lower bound for s_L by showing that

$$C_L - \lambda - \sum_{i=1}^{\kappa} (f_i)^2 \in S \quad \Rightarrow \quad C_L - \lambda \in S.$$
 (6)

Here $p(\sum_{i=1}^{k} (f_i)^2, \delta)$ corresponds to the a_{δ} on the previous slide! Such sum-of-squares (SOS) expressions are related to easily solvable Semidefinite Programs (SDPs).

2. Lower bounds through Flag algebras in \mathbb{F}_q^n **The SDP approach**

Definition

The *flag algebra* (of the empty type) A is given by considering $\mathbb{R}\Gamma$, factoring out relations given by the averaging equality and defining an appropriate product.

There exists an element $C_L \in \mathcal{A}$ capturing the behavior of s_L and the *semantic cone*

$$S = \{ f \in \mathcal{A} : \phi(f) \ge 0 \text{ for all } \phi \in \operatorname{Hom}^+(\mathcal{A}, \mathbb{R}) \}$$
(5)

captures those algebraic expressions corresponding to density expressions that are 'true'. We can therefore establish a lower bound for s_L by showing that

$$C_L - \lambda - \sum_{i=1}^{k} (f_i)^2 \in S \quad \Rightarrow \quad C_L - \lambda \in S.$$
 (6)

Here $p(\sum_{i=1}^{k} (f_i)^2, \delta)$ corresponds to the a_{δ} on the previous slide! Such sum-of-squares (SOS) expressions are related to easily solvable Semidefinite Programs (SDPs).

- Need an appropriate notion of density, isomorphism, and 'partially fixed coloring' both to (i) handle invariance and non-invariance and (ii) define different algebras.
- Solutions as defined previously do *not* satisfy an exact averaging equality. Need to introduce *fully dimensional solutions*, which asymptotically make up all solutions.
- Need to adequately solve isomorphisms problem from a practical perspective.
- (Almost) all SDP solvers work numerically, but we need algebraic expressions.

2. Lower bounds through Flag algebras in \mathbb{F}_q^n Lower bound of the Proposition

$$\begin{split} m_{5,2}(L_{4-\mathrm{AP}}) &> 1/10 \text{ follows by verifying that over all } 3324 \text{ 2-colorings of } \mathbb{F}_5^2 \text{ we have} \\ F_1 + F_4 + (F_2 + F_3)/5 - 1/10 &\geq \sum_{i=1}^2 \left(9/10 \cdot \left[\left[(F_{i,1} + (5\,F_{i,2} - 5\,F_{i,3} - 10\,F_{i,4})/27 \right)^2 \right] \right]_{-1} \\ & \dots + 61/162 \cdot \left[\left[((F_{i,3} - F_{i,2})/2 + F_{i,4})^2 \right] \right]_{-1} \end{split}$$

and by noting that $F_{1,1} + F_{2,1} > 0$. Here the relevant flags F_i and $F_{i,j}$ are

2. Lower bounds through Flag algebras in \mathbb{F}_q^n Lower bound of the Theorem

 $m_{3,3}(L_{3-\mathrm{AP}}) \geq 1/27$ follows by verifying that over all all 140 3-colorings of \mathbb{F}_3^2 we have

$$F_{i} - 1/27 \geq 26/27 \cdot \left[\left(F_{i,1} - 99/182 F_{i,2} + 75/208 F_{i,3} - 11/28 F_{i,4} - 3/26 F_{i,5} \right)^{2} \right]_{-1} \\ \dots + 1685/1911 \cdot \left[\left(F_{i,2} - 231/26960 F_{i,3} + 1703/6740 F_{i,4} - 1869/3370 F_{i,5} \right)^{2} \right]_{-1} \\ \dots + 71779/431360 \cdot \left[\left(F_{i,3} - 358196/502453 F_{i,4} - 412904/502453 F_{i,5} \right)^{2} \right]_{-1} \\ \dots + 5431408/10551513 \cdot \left[\left(F_{i,4} - 1/4 F_{i,5} \right)^{2} \right]_{-1}$$

Towards Flag Algebras in Additive Combinatorics

1. The Rado Multiplicity Problem

2. Lower bounds through Flag algebras in $\mathbb{F}_{q_1}^n$

3. Constructive upper bounds through blow-ups

We can *blow up* an colorings into a sequence of colorings with n tending to infinity.

Computing the density of solutions in the limit of this sequence is easy: simply check *not-necessarily-injective* subcolorings in the base construction. **This gives us an immediate upper bound from** *any* **coloring we can come up with** ...

In some cases we have a *free element* in which we can iterate the blowup-construction.

We can *blow up* an colorings into a sequence of colorings with n tending to infinity.

Computing the density of solutions in the limit of this sequence is easy: simply check *not-necessarily-injective* subcolorings in the base construction. **This gives us an immediate upper bound from** *any* **coloring we can come up with** ...

In some cases we have a *free element* in which we can iterate the blowup-construction.

3. Constructive upper bounds through blow-ups **Proofs of the upper bounds**

Upper bound of the Proposition

 $m_{5,2}(L_{4-\mathrm{AP}}) \leq 13/126$ follows from the iterated blow-up of this 2-coloring of \mathbb{F}_5^3 :

Upper bound of the Theorem

 $m_{3,3}(L_{3-\mathrm{AP}}) \leq 1/27$ follows from the blow-up of this 3-coloring of \mathbb{F}_3^3 :

3. Constructive upper bounds through blow-ups **Proofs of the upper bounds**

Upper bound of the Proposition

 $m_{5,2}(L_{4-\mathrm{AP}}) \leq 13/126$ follows from the iterated blow-up of this 2-coloring of \mathbb{F}_5^3 :

Upper bound of the Theorem

 $m_{3,3}(L_{3-AP}) \leq 1/27$ follows from the blow-up of this 3-coloring of \mathbb{F}_3^3 :

Towards Flag Algebras in Additive Combinatorics

1. The Rado Multiplicity Problem

2. Lower bounds through Flag algebras in $\mathbb{F}_{q_1}^n$

3. Constructive upper bounds through blow-ups

- Often one can extract stability results from Flag Algebra certificates.
- Steep computational hurdle: underlying structures grow exponentially (instead of quadratically for graphs or cubic for 3-uniform hypergraphs)

q/n	1	2	3	4	5	q/n	1	2	3	4
2	3	5	10	32	382	 2	6	15	60	996
3	4	14	1028			3	10	140	25665178	
4	8	1648				4	30	1630868		
5	6	3324				5	24	70 793 574		

Table: Number of 2- and 3-colorings of \mathbb{F}_{a}^{n} .

• No neat notion of subspaces makes generalizing to other groups difficult.

Code is available at github.com/FordUniver/rs_radomult_23

Thank you for your attention!