

1. The Rado Multiplicity Problem
2. Lower bounds through Flag algebras in \mathbb{F}_{q}^{n}
3. Constructive upper bounds through blow-ups
4. Outlook

Definition of the problem

Given a coloring $\gamma: \mathbb{F}_{q}^{n} \rightarrow[c]$ and linear map L, we are interested in

$$
\begin{equation*}
\mathcal{S}_{L}(\gamma) \stackrel{\text { def }}{=}\left\{\mathbf{s} \in\left(\mathbb{F}_{q}^{n}\right)^{m}: L(\mathbf{s})=\mathbf{0}, s_{i} \neq s_{j} \text { for } i \neq j, \mathbf{s} \in \gamma^{-1}(\{i\})^{m} \text { for some } i\right\} . \tag{1}
\end{equation*}
$$

Rado (1933) tells us that $\mathcal{S}_{L}(\gamma) \neq \emptyset$ for large enough n if L satisfies column condition.
The Rado Multiplicity Problem is concerned with determining

$$
m_{q, c}(L) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \min _{\gamma \in \Gamma(n)}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right| .
$$

Limit exists by monotonicity and $0<m_{q, c}(L) \leq 1$ if L is partition regular. L is c-common if $m_{q, c}(L)=c^{1-m}$ (the value attained in a uniform random coloring)

This reminds us of an old question of Erdős in graph theory

Definition of the problem

Given a coloring $\gamma: \mathbb{F}_{q}^{n} \rightarrow[c]$ and linear map L, we are interested in

$$
\begin{equation*}
\mathcal{S}_{L}(\gamma) \stackrel{\text { def }}{=}\left\{\mathbf{s} \in\left(\mathbb{F}_{q}^{n}\right)^{m}: L(\mathbf{s})=\mathbf{0}, s_{i} \neq s_{j} \text { for } i \neq j, \mathbf{s} \in \gamma^{-1}(\{i\})^{m} \text { for some } i\right\} . \tag{1}
\end{equation*}
$$

Rado (1933) tells us that $\mathcal{S}_{L}(\gamma) \neq \emptyset$ for large enough n if L satisfies column condition.
The Rado Multiplicity Problem is concerned with determining

$$
m_{q, c}(L) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \min _{\gamma \in \Gamma(n)}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right|
$$

Limit exists by monotonicity and $0<m_{q, c}(L) \leq 1$ if L is partition regular. L is c-common if $m_{q, c}(L)=c^{1-m}$ (the value attained in a uniform random coloring).

This reminds us of an old question of Erdős in graph theory ...

Definition of the problem

Given a coloring $\gamma: \mathbb{F}_{q}^{n} \rightarrow[c]$ and linear map L, we are interested in

$$
\begin{equation*}
\mathcal{S}_{L}(\gamma) \stackrel{\text { def }}{=}\left\{\mathbf{s} \in\left(\mathbb{F}_{q}^{n}\right)^{m}: L(\mathbf{s})=\mathbf{0}, s_{i} \neq s_{j} \text { for } i \neq j, \mathbf{s} \in \gamma^{-1}(\{i\})^{m} \text { for some } i\right\} . \tag{1}
\end{equation*}
$$

Rado (1933) tells us that $\mathcal{S}_{L}(\gamma) \neq \emptyset$ for large enough n if L satisfies column condition.
The Rado Multiplicity Problem is concerned with determining

$$
m_{q, c}(L) \stackrel{\text { def }}{=} \lim _{n \rightarrow \infty} \min _{\gamma \in \Gamma(n)}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right| .
$$

Limit exists by monotonicity and $0<m_{q, c}(L) \leq 1$ if L is partition regular. L is c-common if $m_{q, c}(L)=c^{1-m}$ (the value attained in a uniform random coloring).

This reminds us of an old question of Erdős in graph theory

Previous results

- Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n], later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.
- Cameron et al. (2007) showed that the nr. of solutions for linear equations with an odd nr. of variables only depends on cardinalities of the two color classes.
- Parrilo, Robertson and Saracino (2008) established bounds for the minimum number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in \mathbb{N}).
- For $r=1$ and m even, Saad and Wolf (2017) showed that any 'pair-partitionable' L is 2-common in \mathbb{F}_{q}^{n}. Fox, Pham, and Zhao (2021) showed that this is necessary.
- Kamčev et al. (2021) characterized some non-common L in \mathbb{F}_{q}^{n} with $r>1$.
- Král et al. (2022) characterized 2-common L for $q=2, r=2$, m odd.

Previous results

- Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n], later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.
- Cameron et al. (2007) showed that the nr. of solutions for linear equations with an odd nr. of variables only depends on cardinalities of the two color classes.
- Parrilo, Robertson and Saracino (2008) established bounds for the minimum number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in \mathbb{N}).
- For $r=1$ and m even, Saad and Wolf (2017) showed that any 'pair-partitionable' L is 2-common in \mathbb{F}_{q}^{n}. Fox, Pham, and Zhao (2021) showed that this is necessary.
- Kamčev et al. (2021) characterized some non-common L in \mathbb{F}_{q}^{n} with $r>1$.
- Král et al. (2022) characterized 2-common L for $q=2, r=2, m$ odd.

What can we contribute?

We are interested in particular L and fixed q. Analogous to e.g. determining Ramsey Multiplicity of K_{4} for 2-uniform graphs (has a long history starting with Erdős in 1962).

Theorem (Rué and S., 2023)

We have $1 / 10<m_{q=5, c=2}\left(L_{4-A P}\right) \leq 0.1031746$.

Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial I.b. known.

Proposition (Rué and S., 2023)
We have $m_{q=3, c=3}\left(L_{3-A P}\right)=1 / 27$

Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

Proofs are computational and applicable to other questions:

- Upper bounds through (iterated) blow-up constructions of particular finite colorings.
- Lower bounds through an extension of the Flag Algebra framework of Razborov (2007) to \mathbb{F}_{q}^{n}.

1. The Rado Multiplicity Problem

What can we contribute?

We are interested in particular L and fixed q. Analogous to e.g. determining Ramsey Multiplicity of K_{4} for 2-uniform graphs (has a long history starting with Erdős in 1962).

Theorem (Rué and S., 2023)

We have $1 / 10<m_{q=5, c=2}\left(L_{4-A P}\right) \leq 0.1 \overline{031746}$.
Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial I.b. known.

Proposition (Rué and S., 2023)
We have $m_{q=3, c=3}\left(L_{3-\mathrm{AP}}\right)=1 / 27$

Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

Proofs are computational and applicable to other questions:

- Upper bounds through (iterated) blow-up constructions of particular finite colorings.
- Lower bounds through an extension of the Flag Algebra framework of Razborov (2007) to \mathbb{F}_{q}^{n}.

1. The Rado Multiplicity Problem

What can we contribute?

We are interested in particular L and fixed q. Analogous to e.g. determining Ramsey Multiplicity of K_{4} for 2-uniform graphs (has a long history starting with Erdős in 1962).

Theorem (Rué and S., 2023)

We have $1 / 10<m_{q=5, c=2}\left(L_{4-A P}\right) \leq 0.1 \overline{031746}$.
Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial I.b. known.

Proposition (Rué and S., 2023)
We have $m_{q=3, c=3}\left(L_{3-A P}\right)=1 / 27$.
Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

Proofs are computational and applicable to other questions:

- Upper bounds through (iterated) blow-up constructions of particular finite colorings.
- Lower bounds through an extension of the Flag Algebra framework of Razborov (2007) to \mathbb{F}_{q}^{n}.

What can we contribute?

We are interested in particular L and fixed q. Analogous to e.g. determining Ramsey Multiplicity of K_{4} for 2-uniform graphs (has a long history starting with Erdős in 1962).

Theorem (Rué and S., 2023)

We have $1 / 10<m_{q=5, c=2}\left(L_{4-A P}\right) \leq 0.1 \overline{031746}$.
Saad and Wolf (2017) previously established an u.b. of 0.1247 with no no-trivial I.b. known.

Proposition (Rué and S., 2023)
We have $m_{q=3, c=3}\left(L_{3-A P}\right)=1 / 27$.
Similar to Cummings et al. (2013) extending a result of Goodman (1959) about triangles.

Proofs are computational and applicable to other questions:

- Upper bounds through (iterated) blow-up constructions of particular finite colorings.
- Lower bounds through an extension of the Flag Algebra framework of Razborov (2007) to \mathbb{F}_{q}^{n}.

1. The Rado Multiplicity Problem
2. Lower bounds through Flag algebras in \mathbb{F}_{q}^{n}
3. Constructive upper bounds through blow-ups
4. Outlook
5. Lower bounds through Flag algebras in \mathbb{F}_{q}^{n}

An improvement on a trivial lower bound

The parameter $s_{L}(\gamma) \stackrel{\text { def }}{=}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right|$ satisfies the averaging equality

$$
\begin{equation*}
s_{L}(\gamma)=\sum_{\delta \in \Gamma(k)} p(\delta, \gamma) s_{L}(\delta)+o(1)=\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta)+o(1) \tag{2}
\end{equation*}
$$

once k is large enough. This implies an immediate trivial lower bound of

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta) \tag{3}
\end{equation*}
$$

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} a_{\delta}=o(1)$, we would get

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta)-a_{\delta} \tag{4}
\end{equation*}
$$

But how would we find such a_{δ} ? Flag Algebras and Semidefinite Programming!
2. Lower bounds through Flag algebras in \mathbb{F}_{q}^{n}

An improvement on a trivial lower bound

The parameter $s_{L}(\gamma) \stackrel{\text { def }}{=}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right|$ satisfies the averaging equality

$$
\begin{equation*}
s_{L}(\gamma)=\sum_{\delta \in \Gamma(k)} p(\delta, \gamma) s_{L}(\delta)+o(1)=\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta)+o(1) \tag{2}
\end{equation*}
$$

once k is large enough. This implies an immediate trivial lower bound of

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta) \tag{3}
\end{equation*}
$$

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} a_{\delta}=o(1)$, we would get

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta)-a_{\delta} . \tag{4}
\end{equation*}
$$

But how would we find such a_{δ} ? Flag Algebras and Semidefinite Programming!

An improvement on a trivial lower bound

The parameter $s_{L}(\gamma) \stackrel{\text { def }}{=}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right|$ satisfies the averaging equality

$$
\begin{equation*}
s_{L}(\gamma)=\sum_{\delta \in \Gamma(k)} p(\delta, \gamma) s_{L}(\delta)+o(1)=\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta)+o(1) \tag{2}
\end{equation*}
$$

once k is large enough. This implies an immediate trivial lower bound of

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta) \tag{3}
\end{equation*}
$$

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} a_{\delta}=o(1)$, we would get

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta)-a_{\delta} . \tag{4}
\end{equation*}
$$

But how would we find such a_{δ} ? Flag Algebras and Semidefinite Programming!

An improvement on a trivial lower bound

The parameter $s_{L}(\gamma) \stackrel{\text { def }}{=}\left|\mathcal{S}_{L}(\gamma)\right| /\left|\mathcal{S}_{L}\left(\mathbb{F}_{q}^{n}\right)\right|$ satisfies the averaging equality

$$
\begin{equation*}
s_{L}(\gamma)=\sum_{\delta \in \Gamma(k)} p(\delta, \gamma) s_{L}(\delta)+o(1)=\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} s_{L}(\delta)+o(1) \tag{2}
\end{equation*}
$$

once k is large enough. This implies an immediate trivial lower bound of

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta) \tag{3}
\end{equation*}
$$

If we magically found some coefficients a_{δ} satisfying $\mathbb{E}_{\delta \in \Gamma(k)}^{(\gamma)} a_{\delta}=o(1)$, we would get

$$
\begin{equation*}
m_{q, c}(L) \geq \min _{\delta \in \Gamma(k)} s_{L}(\delta)-a_{\delta} . \tag{4}
\end{equation*}
$$

But how would we find such a_{δ} ? Flag Algebras and Semidefinite Programming!

Definition
The flag algebra (of the empty type) \mathcal{A} is given by considering $\mathbb{R} \Gamma$, factoring out relations given by the averaging equality and defining an appropriate product.

There exists an element $C_{L} \in \mathcal{A}$ capturing the behavior of s_{L} and the semantic cone

$$
\begin{equation*}
\mathcal{S}=\left\{f \in \mathcal{A}: \phi(f) \geq 0 \text { for all } \phi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})\right\} \tag{5}
\end{equation*}
$$

captures those algebraic expressions corresponding to density expressions that are 'true'. We can therefore establish a lower bound for s_{L} by showing that

Here $p\left(\sum_{i=1}^{k}\left(f_{i}\right)^{2}, \delta\right)$ corresponds to the a_{δ} on the previous slide! Such sum-of-squares (SOS) expressions are related to easily solvable Semidefinite Programs (SDPs).

The SDP approach

Definition
The flag algebra (of the empty type) \mathcal{A} is given by considering $\mathbb{R} \Gamma$, factoring out relations given by the averaging equality and defining an appropriate product.

There exists an element $C_{L} \in \mathcal{A}$ capturing the behavior of s_{L} and the semantic cone

$$
\begin{equation*}
\mathcal{S}=\left\{f \in \mathcal{A}: \phi(f) \geq 0 \text { for all } \phi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})\right\} \tag{5}
\end{equation*}
$$

captures those algebraic expressions corresponding to density expressions that are 'true'. We can therefore establish a lower bound for s_{L} by showing that

$$
\begin{equation*}
C_{L}-\lambda-\sum_{i=1}^{k}\left(f_{i}\right)^{2} \in \mathcal{S} \quad \Rightarrow \quad C_{L}-\lambda \in \mathcal{S} \tag{6}
\end{equation*}
$$

Here $p\left(\sum_{i=1}^{k}\left(f_{i}\right)^{2}, \delta\right)$ corresponds to the a_{δ} on the previous slide! Such sum-of-squares (SOS) expressions are related to easily solvable Semidefinite Programs (SDPs).

Challenges

- Need an appropriate notion of density, isomorphism, and 'partially fixed coloring' both to (i) handle invariance and non-invariance and (ii) define different algebras.
- Solutions as defined previously do not satisfy an exact averaging equality. Need to introduce fully dimensional solutions, which asymptotically make up all solutions.
- Need to adequately solve isomorphisms problem from a practical perspective.
- (Almost) all SDP solvers work numerically, but we need algebraic expressions.

2. Lower bounds through Flag algebras in \mathbb{F}_{q}^{n}

Lower bound of the Proposition

$m_{5,2}\left(L_{4-\mathrm{AP}}\right)>1 / 10$ follows by verifying that over all 3324 2-colorings of \mathbb{F}_{5}^{2} we have

$$
\left.\begin{array}{rl}
F_{1}+F_{4}+\left(F_{2}+F_{3}\right) / 5-1 / 10 \geq & \sum_{i=1}^{2}\left(9 / 10 \cdot \llbracket\left(F_{i, 1}+\left(5 F_{i, 2}-5 F_{i, 3}-10 F_{i, 4}\right) / 27\right)^{2} \rrbracket_{-1}\right. \\
& \ldots+61 / 162 \cdot \llbracket\left(\left(F_{i, 3}-F_{i, 2}\right) / 2+F_{i, 4}\right)^{2} \rrbracket \\
-1
\end{array}\right),
$$

and by noting that $F_{1,1}+F_{2,1}>0$. Here the relevant flags F_{i} and $F_{i, j}$ are

Flags of type \varnothing

Flags of type \square

Flags of type

2. Lower bounds through Flag algebras in \mathbb{F}_{q}^{n}

Lower bound of the Theorem

$m_{3,3}\left(L_{3 \text {-AP }}\right) \geq 1 / 27$ follows by verifying that over all all 140 3-colorings of \mathbb{F}_{3}^{2} we have

$$
\begin{aligned}
& F_{i}-1 / 27 \geq 26 / 27 \cdot \llbracket\left(F_{i, 1}-99 / 182 F_{i, 2}+75 / 208 F_{i, 3}-11 / 28 F_{i, 4}-3 / 26 F_{i, 5}\right)^{2} \rrbracket_{-1} \\
& \ldots+1685 / 1911 \cdot \llbracket\left(F_{i, 2}-231 / 26960 F_{i, 3}+1703 / 6740 F_{i, 4}-1869 / 3370 F_{i, 5}\right)^{2} \rrbracket_{-1} \\
& \ldots+71779 / 431360 \cdot \llbracket\left(F_{i, 3}-358196 / 502453 F_{i, 4}-412904 / 502453 F_{i, 5}\right)^{2} \rrbracket_{-1} \\
& \ldots+5431408 / 10551513 \cdot \llbracket\left(F_{i, 4}-1 / 4 F_{i, 5}\right)^{2} \rrbracket_{-1}
\end{aligned}
$$

for any $i \in\{1,2,3\}$. Here the relevant flags F_{i} and $F_{i, j}$ are

| Flags of type \varnothing | Flags of type \square | Flags of type \square | Flags of type \square |
| :--- | :--- | :--- | :--- | :--- |
| $F_{1} \square \square \square$ | $F_{1,1} \square \square \square$ | $F_{2,1} \square \square \square$ | $F_{3,1} \square \square \square$ |
| $F_{2} \square \square \square$ | $F_{1,2} \square \square \square$ | $F_{2,2} \square \square \square$ | $F_{3,2} \square \square \square$ |
| $F_{3} \square \square \square$ | $F_{1,3} \square \square \square$ | $F_{2,3} \square \square \square$ | $F_{3,3} \square \square \square$ |
| | $F_{1,4} \square \square \square$ | $F_{2,4} \square \square \square$ | $F_{3,4} \square \square$ |
| | $F_{1,5} \square \square \square$ | $F_{2,5} \square \square \square$ | $F_{3,5} \square \square$ |

1. The Rado Multiplicity Problem
2. Lower bounds through Flag algebras in \mathbb{F}_{q}^{n}
3. Constructive upper bounds through blow-ups
4. Outlook
5. Constructive upper bounds through blow-ups

How to blow up colorings

We can blow up an colorings into a sequence of colorings with n tending to infinity.

Computing the density of solutions in the limit of this sequence is easy: simply check not-necessarily-injective subcolorings in the base construction. This gives us an immediate upper bound from any coloring we can come up with ...

In some cases we have a free element in which we can iterate the blowup-construction.

3. Constructive upper bounds through blow-ups

How to blow up colorings

We can blow up an colorings into a sequence of colorings with n tending to infinity.

Computing the density of solutions in the limit of this sequence is easy: simply check not-necessarily-injective subcolorings in the base construction. This gives us an immediate upper bound from any coloring we can come up with ...

In some cases we have a free element in which we can iterate the blowup-construction.

3. Constructive upper bounds through blow-ups
 Proofs of the upper bounds

Upper bound of the Proposition

$m_{5,2}\left(L_{4-\mathrm{AP}}\right) \leq 13 / 126$ follows from the iterated blow-up of this 2 -coloring of \mathbb{F}_{5}^{3} :

Upper bound of the Theorem

$m_{3,3}\left(L_{3 \text {-AP }}\right) \leq 1 / 27$ follows from the blow-up of this 3-coloring of \mathbb{F}_{3}^{3}

3. Constructive upper bounds through blow-ups

Proofs of the upper bounds

Upper bound of the Proposition

$m_{5,2}\left(L_{4-\mathrm{AP}}\right) \leq 13 / 126$ follows from the iterated blow-up of this 2-coloring of \mathbb{F}_{5}^{3} :

Upper bound of the Theorem

$m_{3,3}\left(L_{3-\mathrm{AP}}\right) \leq 1 / 27$ follows from the blow-up of this 3-coloring of \mathbb{F}_{3}^{3} :

1. The Rado Multiplicity Problem
2. Lower bounds through Flag algebras in \mathbb{F}_{q}^{n}
3. Constructive upper bounds through blow-ups
4. Outlook

4. Outlook

Final Remarks

- Often one can extract stability results from Flag Algebra certificates.
- Steep computational hurdle: underlying structures grow exponentially (instead of quadratically for graphs or cubic for 3-uniform hypergraphs)

q / n	1	2	3	4	5		q / n	1	2	3	4
2	3	5	10	32	382		2	6	15	60	996
3	4	14	1028				3	10	140	25665178	
4	8	1648					4	30	1630868		
5	6	3324					5	24	70793574		

Table: Number of 2- and 3-colorings of \mathbb{F}_{q}^{n}.

- No neat notion of subspaces makes generalizing to other groups difficult.

Code is available at github.com/FordUniver/rs_radomult_23

Thank you for your attention!

