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1. The Rado Multiplicity Problem

Definition of the problem
Given a coloring γ : Fn

q → [c] and linear map L, we are interested in

SL(γ) def= {s ∈ (Fn
q)m : L(s) = 0, si ̸= sj for i ̸= j , s ∈ γ−1({i})m for some i}. (1)

Rado (1933) tells us that SL(γ) ̸= ∅ for large enough n if L satisfies column condition.

The Rado Multiplicity Problem is concerned with determining

mq,c(L) def= lim
n→∞

min
γ∈Γ(n)

|SL(γ)| / |SL(Fn
q)|.

Limit exists by monotonicity and 0 < mq,c(L) ≤ 1 if L is partition regular. L is
c-common if mq,c(L) = c1−m (the value attained in a uniform random coloring).

This reminds us of an old question of Erdős in graph theory ...
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1. The Rado Multiplicity Problem

Previous results

• Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n],
later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.

• Cameron et al. (2007) showed that the nr. of solutions for linear equations with
an odd nr. of variables only depends on cardinalities of the two color classes.

• Parrilo, Robertson and Saracino (2008) established bounds for the minimum
number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in N).

• For r = 1 and m even, Saad and Wolf (2017) showed that any ‘pair-partitionable’
L is 2-common in Fn

q. Fox, Pham, and Zhao (2021) showed that this is necessary.

• Kamčev et al. (2021) characterized some non-common L in Fn
q with r > 1.

• Král et al. (2022) characterized 2-common L for q = 2, r = 2, m odd.
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1. The Rado Multiplicity Problem

What can we contribute?
We are interested in particular L and fixed q. Analogous to e.g. determining Ramsey
Multiplicity of K4 for 2-uniform graphs (has a long history starting with Erdős in 1962).

Theorem (Rué and S., 2023)

We have 1/10 < mq=5,c=2(L4-AP) ≤ 0.1031746.

Saad and Wolf (2017) previously established an u.b.
of 0.1247 with no no-trivial l.b. known.

Proposition (Rué and S., 2023)

We have mq=3,c=3(L3-AP) = 1/27.

Similar to Cummings et al. (2013) extending a re-
sult of Goodman (1959) about triangles.

Proofs are computational and
applicable to other questions:

• Upper bounds through
(iterated) blow-up
constructions of particular
finite colorings.

• Lower bounds through an
extension of the Flag
Algebra framework of
Razborov (2007) to Fn

q.



1. The Rado Multiplicity Problem

What can we contribute?
We are interested in particular L and fixed q. Analogous to e.g. determining Ramsey
Multiplicity of K4 for 2-uniform graphs (has a long history starting with Erdős in 1962).
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Proposition (Rué and S., 2023)

We have mq=3,c=3(L3-AP) = 1/27.

Similar to Cummings et al. (2013) extending a re-
sult of Goodman (1959) about triangles.

Proofs are computational and
applicable to other questions:

• Upper bounds through
(iterated) blow-up
constructions of particular
finite colorings.

• Lower bounds through an
extension of the Flag
Algebra framework of
Razborov (2007) to Fn

q.



1. The Rado Multiplicity Problem

What can we contribute?
We are interested in particular L and fixed q. Analogous to e.g. determining Ramsey
Multiplicity of K4 for 2-uniform graphs (has a long history starting with Erdős in 1962).
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2. Lower bounds through Flag algebras in Fn
q

An improvement on a trivial lower bound
The parameter sL(γ) def= |SL(γ)| / |SL(Fn

q)| satisfies the averaging equality

sL(γ) =
∑

δ∈Γ(k)
p(δ, γ) sL(δ) + o(1) = E(γ)

δ∈Γ(k)sL(δ) + o(1) (2)

once k is large enough. This implies an immediate trivial lower bound of

mq,c(L) ≥ min
δ∈Γ(k)

sL(δ). (3)

If we magically found some coefficients aδ satisfying E(γ)
δ∈Γ(k)aδ = o(1), we would get

mq,c(L) ≥ min
δ∈Γ(k)

sL(δ) − aδ. (4)

But how would we find such aδ? Flag Algebras and Semidefinite Programming!
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2. Lower bounds through Flag algebras in Fn
q

The SDP approach
Definition
The flag algebra (of the empty type) A is given by considering RΓ, factoring out
relations given by the averaging equality and defining an appropriate product.

There exists an element CL ∈ A capturing the behavior of sL and the semantic cone

S = {f ∈ A : ϕ(f ) ≥ 0 for all ϕ ∈ Hom+(A,R)} (5)

captures those algebraic expressions corresponding to density expressions that
are ‘true’. We can therefore establish a lower bound for sL by showing that

CL − λ −
k∑

i=1
(fi)2 ∈ S ⇒ CL − λ ∈ S. (6)

Here p(∑k
i=1(fi)2, δ) corresponds to the aδ on the previous slide! Such sum-of-squares

(SOS) expressions are related to easily solvable Semidefinite Programs (SDPs).
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2. Lower bounds through Flag algebras in Fn
q

Challenges

• Need an appropriate notion of density, isomorphism, and ‘partially fixed coloring’
both to (i) handle invariance and non-invariance and (ii) define different algebras.

• Solutions as defined previously do not satisfy an exact averaging equality. Need to
introduce fully dimensional solutions, which asymptotically make up all solutions.

• Need to adequately solve isomorphisms problem from a practical perspective.

• (Almost) all SDP solvers work numerically, but we need algebraic expressions.



2. Lower bounds through Flag algebras in Fn
q

Lower bound of the Proposition
m5,2(L4-AP) > 1/10 follows by verifying that over all 3324 2-colorings of F2

5 we have

F1 + F4 + (F2 + F3)/5 − 1/10 ≥
2∑

i=1

(
9/10 ·

q(
Fi ,1 + (5 Fi ,2 − 5 Fi ,3 − 10 Fi ,4)/27

)2y
−1

. . . + 61/162 ·
q(

(Fi ,3 − Fi ,2)/2 + Fi ,4
)2y

−1

)
,

and by noting that F1,1 + F2,1 > 0. Here the relevant flags Fi and Fi ,j are

Flags of type ∅

F1

F2

F3

F4

Flags of type

F1,1

F1,2

F1,3

F1,4

Flags of type

F2,1

F2,2

F2,3

F2,4



2. Lower bounds through Flag algebras in Fn
q

Lower bound of the Theorem
m3,3(L3-AP) ≥ 1/27 follows by verifying that over all all 140 3-colorings of F2

3 we have

Fi − 1/27 ≥ 26/27 ·
q(

Fi ,1 − 99/182 Fi ,2 + 75/208 Fi ,3 − 11/28 Fi ,4 − 3/26 Fi ,5
)2y

−1

. . . + 1685/1911 ·
q(

Fi ,2 − 231/26960 Fi ,3 + 1703/6740 Fi ,4 − 1869/3370 Fi ,5
)2y

−1

. . . + 71779/431360 ·
q(

Fi ,3 − 358196/502453 Fi ,4 − 412904/502453 Fi ,5
)2y

−1

. . . + 5431408/10551513 ·
q(

Fi ,4 − 1/4 Fi ,5
)2y

−1

for any i ∈ {1, 2, 3}. Here the relevant flags Fi and Fi ,j are
Flags of type ∅

F1

F2

F3

Flags of type

F1,1

F1,2

F1,3

F1,4

F1,5

Flags of type

F2,1

F2,2

F2,3

F2,4

F2,5

Flags of type

F3,1

F3,2

F3,3

F3,4

F3,5
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3. Constructive upper bounds through blow-ups

How to blow up colorings
We can blow up an colorings into a sequence of colorings with n tending to infinity.

→ → ...

Computing the density of solutions in the limit of this sequence is easy: simply check
not-necessarily-injective subcolorings in the base construction. This gives us an
immediate upper bound from any coloring we can come up with ...

In some cases we have a free element in which we can iterate the blowup-construction.

∗ →
∗

→ ...
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3. Constructive upper bounds through blow-ups

Proofs of the upper bounds
Upper bound of the Proposition
m5,2(L4-AP) ≤ 13/126 follows from the iterated blow-up of this 2-coloring of F3

5:

∗

Upper bound of the Theorem
m3,3(L3-AP) ≤ 1/27 follows from the blow-up of this 3-coloring of F3

3:
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4. Outlook

Final Remarks
• Often one can extract stability results from Flag Algebra certificates.
• Steep computational hurdle: underlying structures grow exponentially (instead of

quadratically for graphs or cubic for 3-uniform hypergraphs)
q/n 1 2 3 4 5
2 3 5 10 32 382
3 4 14 1028
4 8 1648
5 6 3324

q/n 1 2 3 4
2 6 15 60 996
3 10 140 25 665 178
4 30 1 630 868
5 24 70 793 574

Table: Number of 2- and 3-colorings of Fn
q.

• No neat notion of subspaces makes generalizing to other groups difficult.

Code is available at github.com/FordUniver/rs_radomult_23

github.com/FordUniver/rs_radomult_23


Thank you for your attention!
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