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Zuse 1. Proof by Picture in Extremal Combinatorics

What do extremal combinatorialists care about?

BERLIN

Extremal Graph Theory, on the most general level, investigates the extremal (maximal or
minimal) value of various graph parameters over the family of graphs having a particular
property. It is a lively subject with a rich history, where numerous natural questions have
beautiful answers. It is a field very much driven by problems; many of the interesting
ones are still wide open and stimulate an abundance of research.

Each such problem has two sides: one is the construction of an extremal structure,
the other is the proof of its optimality. In this course we are putting extra emphasis on
explicit constructions of extremal graphs, which do not customarily feature in standard
treatments of the field. These constructions often require useful tools from algebra,
geometry, or discrete Fourier analysis; the other main objective of these notes is to
highlight them.

p.7 of LET'S BE EXPLICIT! lecture notes by Tibor Szabd, July 2024



f,}’sﬁy 1. Proof by Picture in Extremal Combinatorics
Example 1: Graphs and graph sequences

Question. How many edges can a graph G of order n with w(G) < r have?

Theorem (Mantel, 1907; Turan, 1941; Erds—Stone, 1946)

At most (1 —1/r+o(1))(5), i.e., as many as the Turdn graph T (n,r).






f,}’sﬁy 1. Proof by Picture in Extremal Combinatorics
Example 1: Graphs and graph sequences

Question. How many edges can a graph G of order n with w(G) < r have?

Theorem (Mantel, 1907; Turan, 1941; Erds—Stone, 1946)

At most (1 —1/r+o(1))(5), i.e., as many as the Turdn graph T (n,r).

Question. How large can the order n a graph G with max(«a(G),w(G)) < k be?
Theorem (Ramsey, 1930; many others)

We know that R(3) = 6, R(4) = 18, 43 < R(5) < 46, and 2%/2 < R(k) < 3.78.






IZ#SSTy 1. Proof by Picture in Extremal Combinatorics
Example 1: Graphs and graph sequences

Question. How many edges can a graph G of order n with w(G) < r have?

Theorem (Mantel, 1907; Turan, 1941; Erds—Stone, 1946)

At most (1 —1/r+o(1))(5), i.e., as many as the Turdn graph T (n,r).

Question. How large can the order n a graph G with max(«a(G),w(G)) < k be?

Theorem (Ramsey, 1930; many others)
We know that R(3) = 6, R(4) = 18, 43 < R(5) < 46, and 2%/2 < R(k) < 3.78.

A variant. How few cliques and independent sets of size r can a graph contain?

Theorem (Goodman, 1959)

Asymptotically at least 25% of all triangles need to be cliques or independent sets.



,ZN“;i,wj 1. Proof by Picture in Extremal Combinatorics
Example 2: Coloring the plane

Question. What is the smallest number of colors sufficient for coloring the plane in
such a way that no two points of the same color are a unit distance apart?

Remark. Considering the infinite graph with vertex set E? and edges {x, y} for any
|x — y|| = 1, we are studying the chromatic number of the plane x(E?).

Theorem (Aubrey D.N.J. de Grey, 2018)






f,}’sﬁy 1. Proof by Picture in Extremal Combinatorics
Example 2: Coloring the plane

Question. What is the smallest number of colors sufficient for coloring the plane in
such a way that no two points of the same color are a unit distance apart?

Remark. Considering the infinite graph with vertex set E2 and edges {x, y} for any
Ix — y|| = 1, we are studying the chromatic number of the plane y([E?).

Theorem (Aubrey D.N.J. de Grey, 2018)

There is a unit distance graph on 20425 vertices with chromatic number 5.
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Decades-0Old Graph Problem Yields to
Amateur Mathematician

By EVELYN LAM 2018 26

number of vertices? The problem, now known as the Hadwiger-Nelson
problem or the problem of finding the chromatic number of the plane, has
piqued the interest of many mathematicians, including.

~Quantomacazine




Aubrey de Grey and Alexander Soifer, Il Vicino, January 18, 2020 Ronald L. Graham presents Aubrey D.N.J. de Grey the Prize: $1000, San Diego, September
22,2018



f,}’sﬁy 1. Proof by Picture in Extremal Combinatorics
Example 2: Coloring the plane

Question. What is the smallest number of colors sufficient for coloring the plane in
such a way that no two points of the same color are a unit distance apart?

Remark. Considering the infinite graph with vertex set E2 and edges {x, y} for any
Ix — y|| = 1, we are studying the chromatic number of the plane y([E?).

Theorem (Aubrey D.N.J. de Grey, 2018)

There is a unit distance graph on 20425 vertices with chromatic number 5.

Upper bounds are given by explicit colorings g : E2 — [c] := {1,...,c}, usually
derived through tessellations using simple polytopal shapes, which give

5 < x(E?) < ...






f,}’sﬁy 1. Proof by Picture in Extremal Combinatorics
Example 2: Coloring the plane

Question. What is the smallest number of colors sufficient for coloring the plane in
such a way that no two points of the same color are a unit distance apart?

Remark. Considering the infinite graph with vertex set E2 and edges {x, y} for any
Ix — y|| = 1, we are studying the chromatic number of the plane y([E?).

Theorem (Aubrey D.N.J. de Grey, 2018)

There is a unit distance graph on 20425 vertices with chromatic number 5.

Upper bounds are given by explicit colorings g : E2 — [c] := {1,...,c}, usually
derived through tessellations using simple polytopal shapes, which give

5 < x(E?) <9.
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f,}’sﬁy 1. Proof by Picture in Extremal Combinatorics
Example 2: Coloring the plane

Question. What is the smallest number of colors sufficient for coloring the plane in
such a way that no two points of the same color are a unit distance apart?

Remark. Considering the infinite graph with vertex set E2 and edges {x, y} for any
Ix — y|| = 1, we are studying the chromatic number of the plane y([E?).

Theorem (Aubrey D.N.J. de Grey, 2018)

There is a unit distance graph on 20425 vertices with chromatic number 5.

Upper bounds are given by explicit colorings g : E2 — [c] := {1,...,c}, usually
derived through tessellations using simple polytopal shapes, which give

5 < x(E?) < 8.









f,}’sﬁy 1. Proof by Picture in Extremal Combinatorics
Example 2: Coloring the plane

Question. What is the smallest number of colors sufficient for coloring the plane in
such a way that no two points of the same color are a unit distance apart?

Remark. Considering the infinite graph with vertex set E2 and edges {x, y} for any
Ix — y|| = 1, we are studying the chromatic number of the plane y([E?).

Theorem (Aubrey D.N.J. de Grey, 2018)

There is a unit distance graph on 20425 vertices with chromatic number 5.

Upper bounds are given by explicit colorings g : E2 — [c] := {1,...,c}, usually
derived through tessellations using simple polytopal shapes, which give

5 < x(E?) < 7.
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,Z,:’sﬁy 2. Constructions through Implicit Representation
Constructions through Implicit Representation

Question. Can we use computers to find colorings g : E2 — [c] so that

{x € B2 | g(x) = gly) for any y € Bi(x)} = 07
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BERLIN

f,}’sﬁy 2. Constructions through Implicit Representation
Constructions through Implicit Representation

Question. Can we use computers to find colorings g : E2 — [c] so that

{x € B2 | g(x) = gly) for any y € Bi(x)} = 07

Idea. Consider a probabilistic relaxation to functions p : E> — A, minimizing the loss

te(p) = [ [ pTR) dy ax. (1)
[~R,R]2 9By (x)
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f,}’sﬁy 2. Constructions through Implicit Representation
Constructions through Implicit Representation

Question. Can we use computers to find colorings g : E?2 — [c] so that
gs 8

{x € B?| g(x) = g(y) for any y € Bi(x)} = 07

Idea. Consider a probabilistic relaxation to functions p : E> — A, minimizing the loss

te(p) = [ [ pTR) dy ax. (1)
[~R,R]2 9By (x)

Challenge. Can we find a parameterized and (easily) differentiable family py, i.e., an
implicit representation, and optimize Equation (1) over # through gradient descent?



L SER—- 2. Constructions through Implicit Representation

How to parameterize py?

BERLIN

A few candidates: Taylor or Fourier Series, Splines, Wavelets, SVM, RBF, ...

Theorem (Universal Approximation Theorem)



2. Constructions through Implicit Representation

How to parameterize py?

ZUSE
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BERLIN

A few candidates: Taylor or Fourier Series, Splines, Wavelets, SVM, RBF, ... but we
chose simple feed-forward Neural Networks with sinus activations:

= Efficient gradients through backprop = Sin activation performs well for

» Natural spectral bias towards low implicit repr. (Sitzmann et al., 2020)

frequencies (Rahaman et al., 2019)

Mature software (PyTorch) and

= Implicit representation with NNs is hardware (GPU) ecosystem

SOTA in physics-informed learning = Universal approximation

Theorem (Universal Approximation Theorem)

Feedforward neural networks with certain activation functions are dense (w.r.t.
compact convergence) in the space of continuous functions.
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IZ#SSTy 2. Constructions through Implicit Representation
How do we find the correct parameters?

Algorithm. We used batched gradient descent to ‘train’ pg to minimize Lg(0).
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f,}’sﬁy 2. Constructions through Implicit Representation
How do we find the correct parameters?

Algorithm. We used batched gradient descent to ‘train’ py to minimize Lg(#). At each
step we sample points x() € [-R, R]? and y() € 9B;(x()) and use the fact that

VolLr(0) = VoL(0) == Vo pa(x\) - py(y?)/m,
i—1
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f,}’sﬁy 2. Constructions through Implicit Representation
How do we find the correct parameters?

Algorithm. We used batched gradient descent to ‘train’ py to minimize Lg(#). At each
step we sample points x() € [-R, R]? and y() € 9B;(x()) and use the fact that

VolLr(0) = VoL(0) == Vo pa(x\) - py(y?)/m,
i—1

to adjust the parameters 0 with an appropriate step size ay through

0k+1 = (9;( — Q) @9[_(9)




f,}’sﬁy 2. Constructions through Implicit Representation
How do we find the correct parameters?

Algorithm. We used batched gradient descent to ‘train’ py to minimize Lg(#). At each
step we sample points x() € [-R, R]? and y() € 9B;(x()) and use the fact that

Volr(0) ~ VgL (0) := Y Vg po(x) - pa(y D)/ m,
i=1

to adjust the parameters 0 with an appropriate step size ay through

0k+1 = (9;( — Q) ﬁgL(Q)

Hyperparameters and implementation details.
= MLP with sinus activation functions and two hidden linear layers a 256 neurons.
= We sampled around 2'2 pairs for each step for a total of around 22° samples.

= Trained in PyTorch using AdamW and « linearly decaying from ~ 1073.
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IZ#SSTy 2. Constructions through Implicit Representation
Unfortunately this coloring was already known...
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FIG. 3. A good T-coloring of (R2, 1).

Theorem (Pritikin 1995; refined by Parts 2020)

99.985% of the plane can be colored with 6 colors while avoiding unit distances.
This implies that any unit distance graph with chromatic number 7 must have order > 6 993.



BERLIN

0 4

IZ#SSTy 2. Constructions through Implicit Representation
Unfortunately this coloring was already known...

FIG. 3. A good T-coloring of (R2, 1).

Theorem (Pritikin 1995; refined by Parts 2020)

99.985% of the plane can be colored with 6 colors while avoiding unit distances.

This implies that any unit distance graph with chromatic number 7 must have order > 6 993.

But the principle works! Can we study some variants of the original problem?
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,ZN“;i,wj 3. Applications to Hadwiger-Nelson
Variant 1: Almost succeeding...

Question. What is the smallest percentage of the plane that needs to be removed so
that we can color the rest with 1,2,...,6 colors without monochromatic conflicts?

colors 1 2 3 4 5 6
best known 7456% 54.13% 31.20% 8.25% 4.01% 0.02%
numerics 75.86% 54.14% 31.23% 8.27% 3.56% 0.02%

All previously best known values are due to Paarts (2020) building on
work of Pritikin (1998) for 6 colors and Croft (1967) for 1, 2, 3, and 4 colors.

Theorem (Mundinger, Pokutta, S., Zimmer 2025+)
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IZ#SSTy 3. Applications to Hadwiger-Nelson
Variant 1: Almost succeeding...

Question. What is the smallest percentage of the plane that needs to be removed so
that we can color the rest with 1,2,...,6 colors without monochromatic conflicts?

colors 1 2 3 4 5 6
best known 74.56% 54.13% 31.20% 8.25% 4.01% 0.02%
numerics 75.86% 54.14% 31.23% 8.27% 3.56% 0.02%

All previously best known values are due to Paarts (2020) building on
work of Pritikin (1998) for 6 colors and Croft (1967) for 1, 2, 3, and 4 colors.

Theorem (Mundinger, Pokutta, S., Zimmer 2025+ )

96.29% of the plane can be 5-colored with no monochromatic unit distance pairs.

Remark. We can also color ~ 95% of E2 using 14 colors (not yet formalized).



IZ#SSTy 3. Applications to Hadwiger-Nelson
Variant 2: Going off-diagonal...

A c-coloring realizes (d, ..., dc) if color i does not contain distance d.

Problem (The continuum of six-colorings; Soifer in Nash and Rassias’ Open Problems in Mathematics)

Determine the set of d for which (1,1,1,1,1,d) can be realized.

Soifer (1991) found a coloring for d = 1/4/5. Hoffman and Soifer (1993) also found
one for d = /2 — 1. Both of these are part of a family that covers any

0.414 ~ V2 —1<d <1/V5~ 0.447.






IZ#SSTy 3. Applications to Hadwiger-Nelson
Variant 2: Going off-diagonal...

A c-coloring realizes (d, ..., dc) if color i does not contain distance d.

Problem (The continuum of six-colorings; Soifer in Nash and Rassias’ Open Problems in Mathematics)

Determine the set of d for which (1,1,1,1,1,d) can be realized.

Soifer (1991) found a coloring for d = 1/4/5. Hoffman and Soifer (1993) also found
one for d = /2 — 1. Both of these are part of a family that covers any

0.414 ~ V2 —1<d <1/V5~ 0.447.

Theorem (Mundinger, Pokutta, S., Zimmer 2024)
We extended the range of realizable types to 0.354 < d < 0.553.
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Variant 2: Going off-diagonal ...

Minimum fraction of conflicts over various runs
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Figure: Numerical results showing the percentage of points with some conflict for a given
forbidden distance in the sixth color minimized over several runs.
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Variant 3: Three points are more than two...

Question. With how many colors can we color the plane while avoiding three points of
the same color forming a triangles with edge lengths 0 < a < b <17

Aichholzer and ical evid . it
Perz (2019) numerical eviaence ‘ormalization

O 3colors @O 4colors M@ 5colors W 6 colors
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Graph sequences as continuous objects

4. Applications to Graph Theory

~
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Aren’t graphs ... discrete?
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f,}’sﬁy 4. Applications to Graph Theory
Graph sequences as continuous objects

Aren’t graphs ... discrete? Yes, but ...

1) We can formulate a probabilistic relaxation through a random graph model.
2) Graphons (Lovasz and Szegedy, 2004) tell us that symmetric and measurable
W :[0,1]? — [0,1] correspond bijectively to convergent graph sequences.

You can think of graphons as adjacency matrices viewed as black-and-white images.
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Figure: (left) T(13,4) (center) adjacency matrix  (right) graphon of (T(n.,4))nEN
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Is the same approach applicable?

Figure: Result of maximizing the number
of edges while penalizing cliques of size 5
with a Lagrangian term.
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f,}’sﬁy 4. Applications to Graph Theory
Is the same approach applicable?

Figure: Result of maximizing the number Figure: Result of minimizing the number
of edges while penalizing cliques of size 5 of monochromatic triangles in 3-colorings
with a Lagrangian term. of the edges of a complete graph.
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with a Lagrangian term. of the edges of a complete graph.
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f,}’sﬁy 4. Applications to Graph Theory
Is the same approach applicable?

Figure: Result of maximizing the number Figure: Result of minimizing the number
of edges while penalizing cliques of size 5 of monochromatic triangles in 3-colorings
with a Lagrangian term. of the edges of a complete graph.
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Thank you for your attention!

A description of the methodology was accepted at ICML 2025
and is available at arxiv.org/abs/2501.18527.
A description of the two colorings was published by Geombinatorics Quarterly
and is available at arxiv.org/abs/2404.05509.
Descriptions of the results for almost-colorings and
triangle-free colorings are in preparation.


arxiv.org/abs/2501.18527
arxiv.org/abs/2404.05509
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