
Neural Discovery in
Mathematics
DOML 2025 @ RIMS
Christoph Spiegel
15th of May 2025



Results are joint work with...

Aldo Kiem
Zuse Institute Berlin
Technische U. Berlin

Konrad Mundinger
Zuse Institute Berlin
Technische U. Berlin

Sebastian Pokutta
Zuse Institute Berlin
Technische U. Berlin

Max Zimmer
Zuse Institute Berlin
Technische U. Berlin

mailto:kiem@zib.de
mailto:mundinger@zib.de
mailto:pokutta@zib.de
mailto:zimmer@zib.de


Neural Discovery in Mathematics

1. Proof by Picture in Extremal Combinatorics 3 slides

2. Constructions through Implicit Representation 3 slides

3. Applications to Hadwiger-Nelson 4 slides

4. Applications to Graph Theory 2 slide



1. Proof by Picture in Extremal Combinatorics 3 slides
What do extremal combinatorialists care about?

p.7 of LET’S BE EXPLICIT! lecture notes by Tibor Szabó, July 2024



1. Proof by Picture in Extremal Combinatorics 3 slides
Example 1: Graphs and graph sequences

Question. How many edges can a graph G of order n with ω(G) < r have?

Theorem (Mantel, 1907; Turán, 1941; Erdős–Stone, 1946)

At most
(
1 − 1/r + o(1)

)(n
2
)
, i.e., as many as the Turán graph T (n, r).

Question. How large can the order n a graph G with max(α(G), ω(G)) < k be?

Theorem (Ramsey, 1930; many others)

We know that R(3) = 6, R(4) = 18, 43 ≤ R(5) ≤ 46, and 2k/2 ≲ R(k) ≲ 3.78k .

A variant. How few cliques and independent sets of size r can a graph contain?

Theorem (Goodman, 1959)

Asymptotically at least 25% of all triangles need to be cliques or independent sets.
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Example 2: Coloring the plane

Question. What is the smallest number of colors sufficient for coloring the plane in
such a way that no two points of the same color are a unit distance apart?
Remark. Considering the infinite graph with vertex set E2 and edges {x , y} for any
∥x − y∥ = 1, we are studying the chromatic number of the plane χ(E2).

Theorem (Aubrey D.N.J. de Grey, 2018)

There is a unit distance graph on 20 425 vertices with chromatic number 5.

Upper bounds are given by explicit colorings g : E2 → [c] := {1, . . . , c}, usually
derived through tessellations using simple polytopal shapes, which give

5 ≤ χ(E2) ≤ ...
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5 ≤ χ(E2) ≤ 7.
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Constructions through Implicit Representation

Question. Can we use computers to find colorings g : E2 → [c] so that{
x ∈ E2 | g(x) = g(y) for any y ∈ B1(x)

}
= ∅?

Idea. Consider a probabilistic relaxation to functions p : E2 → ∆c minimizing the loss

LR(p) :=
∫

[−R,R]2

∫
∂B1(x)

p(x)T p(y) dy dx . (1)

Challenge. Can we find a parameterized and (easily) differentiable family pθ, i.e., an
implicit representation, and optimize Equation (1) over θ through gradient descent?
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How to parameterize pθ?

A few candidates: Taylor or Fourier Series, Splines, Wavelets, SVM, RBF, ... but we
chose simple feed-forward Neural Networks with sinus activations:

• Efficient gradients through backprop
• Natural spectral bias towards low

frequencies (Rahaman et al., 2019)
• Implicit representation with NNs is

SOTA in physics-informed learning

• Sin activation performs well for
implicit repr. (Sitzmann et al., 2020)

• Mature software (PyTorch) and
hardware (GPU) ecosystem

• Universal approximation

Theorem (Universal Approximation Theorem)

Feedforward neural networks with certain activation functions are dense (w.r.t.
compact convergence) in the space of continuous functions.
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How do we find the correct parameters?

Algorithm. We used batched gradient descent to ‘train’ pθ to minimize LR(θ). At each
step we sample points x (i) ∈ [−R, R]2 and y (i) ∈ ∂B1(x (i)) and use the fact that

∇θLR(θ) ≈ ∇̂θL(θ) :=
m∑

i=1
∇θ pθ(x (i)) · pθ(y (i))/m,

to adjust the parameters θ with an appropriate step size αk through

θk+1 = θk − αk ∇̂θL(θ).

Hyperparameters and implementation details.
• MLP with sinus activation functions and two hidden linear layers à 256 neurons.
• We sampled around 212 pairs for each step for a total of around 226 samples.
• Trained in PyTorch using AdamW and αk linearly decaying from ∼ 10−3.
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Unfortunately this coloring was already known...

Theorem (Pritikin 1995; refined by Parts 2020)

99.985% of the plane can be colored with 6 colors while avoiding unit distances.
This implies that any unit distance graph with chromatic number 7 must have order ≥ 6 993.

But the principle works! Can we study some variants of the original problem?
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3. Applications to Hadwiger-Nelson 4 slides
Variant 1: Almost succeeding...

Question. What is the smallest percentage of the plane that needs to be removed so
that we can color the rest with 1, 2, . . . , 6 colors without monochromatic conflicts?

colors 1 2 3 4 5 6
best known 74.56% 54.13% 31.20% 8.25% 4.01% 0.02%
numerics 75.86% 54.14% 31.23% 8.27% 3.56% 0.02%

All previously best known values are due to Paarts (2020) building on
work of Pritikin (1998) for 6 colors and Croft (1967) for 1, 2, 3, and 4 colors.

Theorem (Mundinger, Pokutta, S., Zimmer 2025+)

96.29% of the plane can be 5-colored with no monochromatic unit distance pairs.

Remark. We can also color ∼ 95% of E3 using 14 colors (not yet formalized).
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96.29% of the plane can be 5-colored with no monochromatic unit distance pairs.

Remark. We can also color ∼ 95% of E3 using 14 colors (not yet formalized).



3. Applications to Hadwiger-Nelson 4 slides
Variant 2: Going off-diagonal...

A c-coloring realizes (d1, . . . , dc) if color i does not contain distance di .

Problem (The continuum of six-colorings; Soifer in Nash and Rassias’ Open Problems in Mathematics)

Determine the set of d for which (1, 1, 1, 1, 1, d) can be realized.

Soifer (1991) found a coloring for d = 1/
√

5. Hoffman and Soifer (1993) also found
one for d =

√
2 − 1. Both of these are part of a family that covers any

0.414 ≈
√

2 − 1 ≤ d ≤ 1/
√

5 ≈ 0.447.

Theorem (Mundinger, Pokutta, S., Zimmer 2024)

We extended the range of realizable types to 0.354 ≤ d ≤ 0.553.
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Figure: Numerical results showing the percentage of points with some conflict for a given
forbidden distance in the sixth color minimized over several runs.
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Variant 3: Three points are more than two...

Question. With how many colors can we color the plane while avoiding three points of
the same color forming a triangles with edge lengths 0 ≤ a ≤ b ≤ 1?
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4. Applications to Graph Theory 2 slide
Graph sequences as continuous objects

Aren’t graphs ... discrete? Yes, but ...
1) We can formulate a probabilistic relaxation through a random graph model.
2) Graphons (Lovasz and Szegedy, 2004) tell us that symmetric and measurable

W : [0, 1]2 → [0, 1] correspond bijectively to convergent graph sequences.
You can think of graphons as adjacency matrices viewed as black-and-white images.

Figure: (left) T (13, 4) (center) adjacency matrix (right) graphon of
(
T (n, 4)

)
n∈N
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4. Applications to Graph Theory 2 slide
Is the same approach applicable?

Figure: Result of maximizing the number
of edges while penalizing cliques of size 5
with a Lagrangian term.

Figure: Result of minimizing the number
of monochromatic triangles in 3-colorings
of the edges of a complete graph.
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Thank you for your attention!

A description of the methodology was accepted at ICML 2025
and is available at arxiv.org/abs/2501.18527.

A description of the two colorings was published by Geombinatorics Quarterly
and is available at arxiv.org/abs/2404.05509.

Descriptions of the results for almost-colorings and
triangle-free colorings are in preparation.

arxiv.org/abs/2501.18527
arxiv.org/abs/2404.05509
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