
Towards Flag Algebras
in Additive Combinatorics
FoCM 2023 – Workshop I.3:
Graph Theory and Combinatorics
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1. The Trouble with Defining Additive Flag Algebras

The Motivation

Why are there no Flag Algebras in Additive Combinatorics?

Given T ⊂ G and linear map L, we care about

SL(T ) def= {s ∈ T m : L(s) = 0, si ̸= sj for i ̸= j}, (1)

where G = [n], Zn, Zp, Fn
q, . . . and L represents AP, Schur triples, ...

• Ramsey (1930) ↭ Schur (1917), van der Waerden (1927), and Rado (1933)
• Mantel (1907) and Turán (1941) ↭ Roth (1953) and Szémeredi (1975)
• regularity lemma (Szémeredi, 1978) ↭ arithmetic regularity (Green, 2005)
• random graph G(n, p) ↭ random sets [n]p, (Zn)p, . . .
• blowup-type constructions are relevant in both
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1. The Trouble with Defining Additive Flag Algebras

The Motivation

Figure: Cameron, Peter J., Javier Cilleruelo, and Oriol Serra. ”On monochromatic solutions of
equations in groups.” Revista Matemática Iberoamericana 23.1 (2007): 385-395.



1. The Trouble with Defining Additive Flag Algebras

A Problem

What we need is a rule like

p(small, large) =
∑

medium
p(small, medium) · p(medium, large) (2)

for some notion of density

p(struct, •) = # substructures isomorphic to struct in •
# substructures of same size as struct in •

. (3)

Finding a working notion of substructure seems difficult in [n], Zn, Zp ...

Can we formulate Flag Algebras for GF (q)n = Fn
q?
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2. The Rado Multiplicity Problem

Counting monochromatic solutions
Given a coloring γ : Fn

q → [c] and linear map, we are interested in

SL(γ) def=
c⋃

i=1
SL
(
γ−1({i})

)
. (4)

Rado (1933) tells us that SL(γ) ̸= ∅ for large enough n if L satisfies column condition.

The Rado Multiplicity Problem is concerned with determining

mq,c(L) def= lim
n→∞

min
γ∈Γ(n)

|SL(γ)| / |SL(Fn
q)|.

Limit exists by monotonicity and 0 < mq,c(L) ≤ 1 if L is partition regular. L is
c-common if mq,c(L) = c1−m (the value attained in a uniform random coloring).
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2. The Rado Multiplicity Problem

Previous results

• Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n],
later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.

• Cameron et al. (2007) showed that the nr. of solutions for linear equations with
an odd nr. of variables only depends on cardinalities of the two color classes.

• Parrilo, Robertson and Saracino (2008) established bounds for the minimum
number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in N).

• For r = 1 and m even, Saad and Wolf (2017) showed that any ‘pair-partitionable’
L is 2-common in Fn

q. Fox, Pham, and Zhao (2021) showed that this is necessary.

• Kamčev et al. (2021) characterized some non-common L in Fn
q with r > 1.

• Král et al. (2022) characterized 2-common L for q = 2, r = 2, m odd.
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2. The Rado Multiplicity Problem

Our results

Theorem (Rué and S., 2023)

We have 1/10 < mq=5,c=2(L4-AP) ≤ 0.1031746.

Saad and Wolf (2017) previously established an u.b.
of 0.1247 with no no-trivial l.b. known.

Proposition (Rué and S., 2023)

We have mq=3,c=3(L3-AP) = 1/27.

Similar to Cummings et al. (2013) extending a re-
sult of Goodman (1959) about triangles.

Proofs are computational:
• Upper bounds obtained

through (iterated) blow-up
constructions found
through exhaustive and
heuristic searches.

• Lower bounds obtained
through SOS expressions in
Flag Algebras found
through an SDP solver.
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3. Proofs of Lower Bounds

The Right Notion of Substructure
Definition (Partially fixed Morphisms, Monomorphisms, and Isomorphisms)

An affine linear map φ : Fk
q → Fn

q as a t-fixed morphism iff φ(ej) = ej for all 0 ≤ j ≤ t
(where t ≥ −1 and e0 = 0). It is a mono/isomorphism iff it is in/bijective.

This gives us ...
• ... a notion of isomorphic colorings through isomorphisms,
• ... a notion of substructure or sub-coloring through monomorphisms,
• ... a notion of density through (3) that satisfies (2),
• ... blow-up bounds through not-necessarily-injective morphisms,
• ... a notion of a ‘type’ through t,

Remark
The ‘base’ case is t = −1 for invariant structures and t = 0 otherwise.
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3. Proofs of Lower Bounds

Counting solutions through colorings
Problem. How to count solutions through colorings? In Fn

3 for example, the Schur
triple (0, 0, 0), (1, 2, 0), (2, 1, 0) defines a unique 2-dimensional linear subspace, but the
Schur triple (0, 0, 0), (1, 1, 0), (2, 2, 0) does not ...

Definition
The dimension dimt(s) of s ∈ SL is the smallest dimension of a t-fixed subspace
containing it and dimt(L) is the largest dimension of any solution.

Each fully dimensional solution determines a unique dimt(L)-dimensional substructure
in which it lies. Writing St

L(T ) = {s ∈ SL(T ) : dimt(s) = dimt)(L)}, we have

|St
L(Fn

q)| = |S(Fn
q)|
(
1 + o(1)

)
.

So fully-dimensional solutions is what we are actually counting!
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3. Proofs of Lower Bounds

SOS please someone help me
Definition
The (unfixed or 0-fixed) flag algebra A is given by considering linear combinations of
(unfixed or 0-fixed) colorings, factoring out (2) and defining an appropriate product.

The semantic cone

S = {f ∈ A : ϕ(f ) ≥ 0 for all ϕ ∈ Hom+(A,R)} (5)

captures those algebraic expressions corresponding to density expressions that are
‘true’. We can establish a lower bound through

CL − λ −
k∑

i=1
(fi)2 ∈ S, (6)

where CL ∈ A counts fully-dimensional solutions. Such sum-of-squares (SOS)
expressions are solvable through Semidefinite Programming (SDP).
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3. Proofs of Lower Bounds

Lower bound of the Proposition
m5,2(L4-AP) > 1/10 follows by verifying that

F1 + F4 + (F2 + F3)/5 − 1/10 ≥
2∑

i=1

(
9/10 ·

q(
Fi ,1 + (5 Fi ,2 − 5 Fi ,3 − 10 Fi ,4)/27

)2y
−1

. . . + 61/162 ·
q(

(Fi ,3 − Fi ,2)/2 + Fi ,4
)2y

−1

)
,

over all 3324 2-colorings of F2
5 (and by noting that F1,1 + F2,1 > 0), where

Flags of type ∅

F1

F2

F3

F4

Flags of type

F1,1

F1,2

F1,3

F1,4

Flags of type

F2,1

F2,2

F2,3

F2,4



3. Proofs of Lower Bounds

Lower bound of the Theorem
m3,3(L3-AP) ≥ 1/27 follows by verifying that

Fi − 1/27 ≥ 26/27 ·
q(

Fi ,1 − 99/182 Fi ,2 + 75/208 Fi ,3 − 11/28 Fi ,4 − 3/26 Fi ,5
)2y

−1

. . . + 1685/1911 ·
q(

Fi ,2 − 231/26960 Fi ,3 + 1703/6740 Fi ,4 − 1869/3370 Fi ,5
)2y

−1

. . . + 71779/431360 ·
q(

Fi ,3 − 358196/502453 Fi ,4 − 412904/502453 Fi ,5
)2y

−1

. . . + 5431408/10551513 ·
q(

Fi ,4 − 1/4 Fi ,5
)2y

−1

for any i ∈ {1, 2, 3} over all 140 3-colorings of F2
3, where

Flags of type ∅

F1

F2

F3

Flags of type

F1,1

F1,2

F1,3

F1,4

F1,5

Flags of type

F2,1

F2,2

F2,3

F2,4

F2,5

Flags of type

F3,1

F3,2

F3,3

F3,4

F3,5



3. Proofs of Lower Bounds

Final Remarks

• Often one can extract stability results from Flag Algebra certificates.

• Steep computational hurdle: underlying structures grow exponentially

• No neat notion of subspaces makes generalizing to [n] /Zn /Zp difficult.

Code is available at github.com/FordUniver/rs_radomult_23

github.com/FordUniver/rs_radomult_23


Thank you for your attention!



4. Appendix

How many colorings are there?
q/n 1 2 3 4 5
2 3 5 10 32 382
3 4 14 1028
4 8 1648
5 6 3324

q/n 1 2 3 4 5
2 4 8 20 92 2744
3 6 36 15 636
4 14 7724
5 12 72 192

Table: Number of 2-colorings of Fn
q up to unfixed (left) and 0-fixed (right) isomorphism.

q/n 1 2 3 4
2 6 15 60 996
3 10 140 25 665 178
4 30 1 630 868
5 24 70 793 574

q/n 1 2 3 4
2 9 30 180 6546
3 18 648
4 69 8 451 708
5 72

Table: Number of 3-colorings of Fn
q up to unfixed (left) and 0-fixed (right) isomorphism.



4. Appendix

How to blow up colorings
We can blow up an colorings into a sequence of colorings with n tending to infinity.

→ → ...

Computing the density of solutions in the limit of this sequence is easy: simply check
not-necessarily-injective subcolorings in the base construction. This gives us an
immediate upper bound from any coloring we can come up with ...

In some cases we have a free element in which we can iterate the blowup-construction.

∗ →
∗

→ ...



4. Appendix

Proofs of the upper bounds
Upper bound of the Proposition
m5,2(L4-AP) ≤ 13/126 follows from the iterated blow-up of this 2-coloring of F3

5:

∗

Upper bound of the Theorem
m3,3(L4-AP) ≤ 1/27 follows from the blow-up of this 3-coloring of F3

3:



4. Appendix

Counting Monomorphisms
We write [n]q = ∑n−1

i=0 qi for the q-number of n, [n]q! = [n]q · · · [2]q [1]q for the
q-factorial of n, and let the Gaussian multinomial coefficient be(

n
k1, . . . , km

)
q

= [n]q!
[k1]q! · · · [km]q! [n − k ′]q! .

Lemma (Double Counting)

We have

| Mont(k1, . . . , km; n′)| | Mont(n′; n)| = | Mont(k1, . . . , km; n)|
(

n − k ′

n′ − k ′

)
q

for any t ≥ −1, k1, . . . , km ≥ t+, and n ≥ n′ ≥ k ′ = k1 + . . . + km − (m − 1) t+.



4. Appendix

Counting Monomorphisms
Lemma (Unfixed Monomorphisms)

For any integers 0 ≤ k1, . . . , km and n ≥ k ′ = k1 + . . . + km, we have

| Mon−1(k1, . . . , km; n)| = qn−k′
(

n
k1, . . . , km

)
q
.

Lemma (Fixed Monomorphisms)

For integers 0 ≤ t ≤ k1, . . . , km and n ≥ k ′ = k1 + . . . + km − (m − 1) t, we have

| Mont(k1, . . . , km; n)| =
(

n − t
k1 − t, . . . , km − t

)
q
.
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