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'Z#SSTy 1. The Trouble with Defining Additive Flag Algebras
The Motivation

Why are there no Flag Algebras in Additive Combinatorics?

Given T C G and linear map L, we care about
S(T)E {se Tm: L(s) =0,s; # s fori # j}, (1)
where G = [n], Zy, Zy, Fg, ... and L represents AP, Schur triples, ...

= Ramsey (1930) «~ Schur (1917), van der Waerden (1927), and Rado (1933)
= Mantel (1907) and Turan (1941) «~ Roth (1953) and Szémeredi (1975)

= regularity lemma (Szémeredi, 1978) «~ arithmetic regularity (Green, 2005)

= random graph G(n, p) «~ random sets [n]p, (Zn)p, - - -

= blowup-type constructions are relevant in both
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Figure: Cameron, Peter J., Javier Cilleruelo, and Oriol Serra. "On monochromatic solutions of

In the table below we have marked in bold a monochromatic or rainbow
arithmetic progression in each 3-coloring of the 9-tuples. This proves that
any 3-coloring of any 9-tuple contains a non-degenerate arithmetic progres-
sion of length 3 belonging to M or R.

111 skokosk ok k% 11221221 12122111 1221213 %%

112111 %% 11221222x% 12122112 1221221 %=

1121121 %% 112212231 12122113 1221222 %%

11211221 % 112212232 121221211 12212231 %

11211222 % 112212233 121221212 12212232x%

11211223 1122123 xx 121221213 12212233«

1121123 %% 112213 % *x 12122122 122123 %% x

1121131 %x 11222%%%xx 12122123 12213 xxx*x

1121132%x 11223 %% *xx 1212213 %% 1222%%xx%x%

1121133 %% 1123 % %% *x 121222% %% 12231 xxx*x

112121 %% % 12111 %x%x%xx 1212231 %% 122321 %x*x

1121221 %x 1211211 %x 12122321 % 12232211«

equations in groups.” Revista Matematica Iberoamericana 23.1 (2007): 385-395.
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What we need is a rule like

p(small,large) = Z p(small, medium) - p(medium, large)

medium

for some notion of density

# substructures isomorphic to struct in e

struct,e) = . —.
A ®) # substructures of same size as struct in e
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for some notion of density

# substructures isomorphic to struct in e
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A ®) # substructures of same size as struct in e

Finding a working notion of substructure seems difficult in [n], Z,, L
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What we need is a rule like

p(small,large) = Z p(small, medium) - p(medium, large) (2)

medium

for some notion of density

# substructures isomorphic to struct in e

struct,e) = - . .
A ®) # substructures of same size as struct in e

Finding a working notion of substructure seems difficult in [n], Z,, L

Can we formulate Flag Algebras for GF(q)" = F;?
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Counting monochromatic solutions

Given a coloring v : Fj — [c] and linear map, we are interested in
C
def _ .
St = USt{i})- (4)
i=1

Rado (1933) tells us that Sy () # 0 for large enough n if L satisfies column condition.



}#sﬁy 2. The Rado Multiplicity Problem
Counting monochromatic solutions

Given a coloring v : Fg — [c] and linear map, we are interested in
c
def — .
St = Usctdi). (4)
i=1

Rado (1933) tells us that Sy () # 0 for large enough n if L satisfies column condition.

The Rado Multiplicity Problem is concerned with determining

Ma.c(L) = lim  min [Sy(v)]/SLE)]:

n—o00 ')/Er(n)

Limit exists by monotonicity and 0 < mg (L) < 1if L is partition regular. L is
c-common if mg (L) = c!=™ (the value attained in a uniform random coloring).
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= Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n],
later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.

= Cameron et al. (2007) showed that the nr. of solutions for linear equations with
an odd nr. of variables only depends on cardinalities of the two color classes.

= Parrilo, Robertson and Saracino (2008) established bounds for the minimum
number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in N).



}#sﬁy 2. The Rado Multiplicity Problem
Previous results

= Graham et al. (1996) gave lower bound for Schur triples in 2-colorings of [n],
later independently resolved by Robertson and Zeilberger / Schoen / Datskovsky.

= Cameron et al. (2007) showed that the nr. of solutions for linear equations with
an odd nr. of variables only depends on cardinalities of the two color classes.

= Parrilo, Robertson and Saracino (2008) established bounds for the minimum
number of monochromatic 3-APs in 2-colorings of [n] (not 2-common in N).

= For r =1 and m even, Saad and Wolf (2017) showed that any ‘pair-partitionable’
L is 2-common in Fg. Fox, Pham, and Zhao (2021) showed that this is necessary.

= Kamcev et al. (2021) characterized some non-common L in F{ with r > 1.

= Kral et al. (2022) characterized 2-common L for ¢ =2, r =2, m odd.
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Theorem (Rué and S., 2023)
We have 1/].0 < mq:57C:2(L4_Ap) < 0.1031746.

Saad and Wolf (2017) previously established an u.b.
of 0.1247 with no no-trivial I.b. known.

Proposition (Rué and S., 2023)

We have mq:3yC:3(L3_Ap) = 1/27.

Similar to Cummings et al. (2013) extending a re-
sult of Goodman (1959) about triangles.

Proofs are computational:

= Upper bounds obtained
through (iterated) blow-up
constructions found
through exhaustive and
heuristic searches.

= Lower bounds obtained
through SOS expressions in
Flag Algebras found
through an SDP solver.
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Definition (Partially fixed Morphisms, Monomorphisms, and Isomorphisms)

An affine linear map ¢ : Fg — FZ as a t-fixed morphism iff cp(ej) =¢g forall 0 <<t
(where t > —1 and ey = 0). It is a mono/isomorphism iff it is in/bijective.

This gives us ...
= ... a notion of isomorphic colorings through isomorphisms,
= ... a notion of substructure or sub-coloring through monomorphisms,
= ... a notion of density through (3) that satisfies (2),
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The Right Notion of Substructure

Definition (Partially fixed Morphisms, Monomorphisms, and Isomorphisms)

An affine linear map ¢ : Fg — FZ as a t-fixed morphism iff cp(ej) =¢g forall 0 <<t
(where t > —1 and ey = 0). It is a mono/isomorphism iff it is in/bijective.

This gives us ...

= ... a notion of isomorphic colorings through isomorphisms,

= ... a notion of substructure or sub-coloring through monomorphisms,
= ... a notion of density through (3) that satisfies (2),

= ... blow-up bounds through not-necessarily-injective morphisms,

= ... a notion of a ‘type’ through t,

The ‘base’ case is t = —1 for invariant structures and t = 0 otherwise.
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Problem. How to count solutions through colorings? In [F5 for example, the Schur
triple (0,0,0),(1,2,0),(2,1,0) defines a unique 2-dimensional linear subspace, but the
Schur triple (0,0,0), (1,1,0),(2,2,0) does not ...

Definition
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containing it and dim;(L) is the largest dimension of any solution.

Each fully dimensional solution determines a unique dim¢(L)-dimensional substructure
in which it lies.
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Counting solutions through colorings

Problem. How to count solutions through colorings? In [F5 for example, the Schur
triple (0,0,0),(1,2,0),(2,1,0) defines a unique 2-dimensional linear subspace, but the
Schur triple (0,0,0),(1,1,0),(2,2,0) does not ...

Definition
The dimension dim,(s) of s € S, is the smallest dimension of a t-fixed subspace
containing it and dim;(L) is the largest dimension of any solution.

Each fully dimensional solution determines a unique dim¢(L)-dimensional substructure
in which it lies. Writing Sf(T) = {s € St(T) : dim¢(s) = dim;)(L)}, we have

|SL(EQ] = IS(FQI (1 + o(1)).

So fully-dimensional solutions is what we are actually counting!
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Definition

The (unfixed or 0-fixed) flag algebra A is given by considering linear combinations of
(unfixed or 0-fixed) colorings, factoring out (2) and defining an appropriate product.
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Definition

The (unfixed or 0-fixed) flag algebra A is given by considering linear combinations of
(unfixed or 0-fixed) colorings, factoring out (2) and defining an appropriate product.

The semantic cone
S={feA:¢(f) >0 forall p € Hom*(A,R)} (5)

captures those algebraic expressions corresponding to density expressions that are
‘true’. We can establish a lower bound through

k
CL—A=) (f) €S, (6)
i=1

where C; € A counts fully-dimensional solutions.
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SOS please someone help me

Definition

The (unfixed or 0-fixed) flag algebra A is given by considering linear combinations of
(unfixed or 0-fixed) colorings, factoring out (2) and defining an appropriate product.

The semantic cone
S={feA:¢(f) >0 for all € Hom™ (A, R)} (5)

captures those algebraic expressions corresponding to density expressions that are
‘true’. We can establish a lower bound through

k
CL—A=) (f) €S, (6)
i=1

where C; € A counts fully-dimensional solutions. Such sum-of-squares (SOS)
expressions are solvable through Semidefinite Programming (SDP).
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Lower bound of the Proposition
ms 2(La-ap) > 1/10 follows by verifying that

2
Fit Fa+ (Pt F3)/5=1/10 > 3" (9/10- [(Fix + (5Fio — 5 Fiz — 10 Fia)/27)°] _,
i=1

..+61/162- [((Fiz— Fi2)/2+ F,-,4)2]]_1),

over all 3324 2-colorings of F% (and by noting that Fi 1 + Fp1 > 0), where

Flags of type @ Flags of type O Flags of type M

/ OOO0O0O F, OOOOO] r, HHEEN
£ OIOIOA FR, OOOCM F, HEHE]
, DARER R, OCHEN 2 | [l
r HHNHEE F, OJNHENR R, OO0
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m3 3(L3-ap) > 1/27 follows by verifying that

Fi—1/27 > 2627 - [(Fi1 — 99/182 Fi 5 +75/208 Fy5 — 11/28 Fia — 3/26 Fi5)]
...+ 1685/1911 - [(Fi» — 231/26960 F; 3 + 1703/6740 F; 4 — 1869/3370 F;5)°]
...+ T71779/431360 - [(Fi 3 — 358196/502453 F; 4 — 412904/502453 F; 5)°] .
...+ 5431408/10551513 - [(Fia — 1/4 Fi5)?]

-1

for any i € {1,2,3} over all 140 3-colorings of 3, where

Flags of type @ Flags of type O Flags of type O Flags of type W

/ OO0 R, OO0 R, CEE F, HEH
r, DEE R, LEE R, OHE r, ECIC
- HEH R, OOE F; OEH r; HEC]
R, OEH F, CIH[] r, WO
Rs M Fs OEC Fs D
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Final Remarks
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= Often one can extract stability results from Flag Algebra certificates.
= Steep computational hurdle: underlying structures grow exponentially

= No neat notion of subspaces makes generalizing to [n] / Z, / Z, difficult.

Code is available at github.com/FordUniver/rs_radomult_23



github.com/FordUniver/rs_radomult_23
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Thank you for your attention!
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How many colorings are there?

g/n|1 2 3 4 5 g/n| 1 2 3 4 5
2 |3 5 10 32 382 2 | 4 8 20 92 2744
3 |4 14 1028 3 |16 36 15636

4 |8 1648 4 |14 7724

5 |6 3324 5 [ 12 72192

Table: Number of 2-colorings of Iy up to unfixed (left) and 0-fixed (right) isomorphism.

g/n| 1 2 3 4 g/n| 1 2 3 4
2 |6 15 60 996 2 19 30 180 6546
3 |10 140 25665 178 3 (18 648
4 |30 1630868 4 |69 8451708
5 |24 70793574 5 |72

Table: Number of 3-colorings of Iy up to unfixed (left) and 0-fixed (right) isomorphism.
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How to blow up colorings

We can blow up an colorings into a sequence of colorings with n tending to infinity.

L
oom - oOm -
e

Computing the density of solutions in the limit of this sequence is easy: simply check
not-necessarily-injective subcolorings in the base construction. This gives us an
immediate upper bound from any coloring we can come up with ...

In some cases we have a free element in which we can iterate the blowup-construction.

L/
¢HOm - oW -
HN
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Proofs of the upper bounds

Upper bound of the Proposition
ms o(La-ap) < 13/126 follows from the iterated blow-up of this 2-coloring of Fg:

EIm | pusiminl e | (g | (e B (W | | |
HEEE H BN /EE N BN BN BN [ m (][]
HLLEE BN N BN (mEE0) OO
UL/ AE N EEE EEERC 0 (D/moE CO/m.
i mEay | | | HeEEE man e aene

Upper bound of the Theorem
ms3 3(La-ap) < 1/27 follows from the blow-up of this 3-coloring of F:

UE COEE EE
E COEE HE
OOE Nl e
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Counting Monomorphisms

We write [n]q = 3273 ¢’ for the g-number of n, [n]g! = [n]g- - - [2]q [1]4 for the
g-factorial of n, and let the Gaussian multinomial coefficient be

n B [n]q!
(kl, el k'")q kilg! - [kmlg! [0 — Kt

Lemma (Double Counting)
We have

n — k'

_k/
| Mong(ky, . .., kmi )| | Mone(n'; n)| = | Mon(Ku, - . ., kn; )] (” )
q

forany t > —1, ky,....,km>tT,andn>n >k =k +...+ k;m—(m—1)t".
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Lemma (Unfixed Monomorphisms)

For any integers 0 < ky,...,km and n > k' = ky + ... + kp,, we have

|Mon_1(ki, ..., km:n)| = q" ¥ g .
Kiy...  km :

Lemma (Fixed Monomorphisms)

For integers 0 < t < ky,...,km and n > k' = ki + ... + kyy — (m — 1) t, we have

n—t
|Mont(k17,..7km’n)|_ (klt,,kmt>q
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