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2. How? – Implicit Representation 3 slides

3. What Did We Learn? – Results 2 slides



1. What? – The Chromatic Number of the Plane 2 slides
How can a picture be a proof?

p.7 of LET’S BE EXPLICIT! lecture notes by Tibor Szabó, July 2024



1. What? – The Chromatic Number of the Plane 2 slides
The Hadwiger Nelson problem

Question. What is the smallest number of colors sufficient for coloring the plane
in such a way that no two points of the same color are a unit distance apart?

Considering the infinite graph with vertex set E2 and edges {x , y} for any
∥x − y∥ = 1, we are studying the chromatic number of the plane χ(E2).

Theorem (Aubrey D.N.J. de Grey, 2018; USD 1000 problem of Erdős)

There is a unit distance graph with chromatic number 5 and therefore

χ(E2) ≥ 5.

Upper bounds are given by explicit colorings g : E2 → [c] := {1, . . . , c}, usually
derived through tessellations using simple polytopal shapes, which give

χ(E2) ≤ 7.
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There is a unit distance graph with chromatic number 5 and therefore

χ(E2) ≥ 5.

Upper bounds are given by explicit colorings g : E2 → [c] := {1, . . . , c}, usually
derived through tessellations using simple polytopal shapes, which give

χ(E2) ≤ 7.



Neural Discovery in Mathematics

1. What? – The Chromatic Number of the Plane 2 slides

2. How? – Implicit Representation 3 slides

3. What Did We Learn? – Results 2 slides



2. How? – Implicit Representation 3 slides
Constructions through Implicit Representation

Question. Can we use computers to find colorings g : E2 → [c] so that{
x ∈ E2 | g(x) = g(y) for any y ∈ B1(x)

}
= ∅?

Idea. Consider a probabilistic relaxation to functions p : E2 → ∆c minimizing the loss

LR(p) :=
∫

[−R,R]2

∫
∂B1(x)

p(x)T p(y) dy dx . (1)

Challenge. Can we find a parameterized and (easily) differentiable family pθ, i.e., an
implicit representation, and optimize Equation (1) over θ through gradient descent?
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2. How? – Implicit Representation 3 slides
How to parameterize pθ?

A few candidates: Taylor or Fourier Series, Splines, Wavelets, SVM, RBF, ...
but we landed on simple feed-forward Neural Networks with sine activations.

Algorithm. We used batched gradient descent and Monte Carlo sampling to minimize
LR(θ): sample x (i) ∈ [−R, R]2 and y (i) ∈ ∂B1(x (i)) and update parameters through

θk+1 = θk − αk

m∑
i=1

∇θ pθ(x (i)) · pθ(y (i))/m.

Let’s see what happens if we try to color the plane with six colors...
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2. How? – Implicit Representation 3 slides
Unfortunately this coloring was already known...

Theorem (Pritikin 1995; refined by Parts 2020)

99.985% of the plane can be colored with 6 colors while avoiding unit distances.
This implies that any unit distance graph with chromatic number 7 must have order ≥ 6 993.

But the principle works! Can we study some variants of the original problem?
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3. What Did We Learn? – Results 2 slides
Application 1: Almost succeeding...

Question. What is the smallest percentage of the plane that needs to be removed so
that we can color the rest with 1, 2, . . . , 6 colors without monochromatic conflicts?

# colors 1 2 3 4 5 6

prior 77.04% 54.13% 31.20% 8.25% 4.01% 0.02%
numerics 77.07% 54.21% 31.34% 8.29% 3.60% 0.03%
formalized 77.13% 54.29% 31.51% 8.52% 3.74% 0.04%

All previously best known values are due to Paarts (2020) building on
work of Pritikin (1998) for 6 colors and Croft (1967) for 1, 2, 3, and 4 colors.

Theorem
96.29% of the plane can be 5-colored with no monochromatic unit distance pairs.
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3. What Did We Learn? – Results 2 slides
Application 2: Going off-diagonal...

Definition. A c-coloring realizes (d1, . . . , dc) if color i does not contain distance di .

Problem (The continuum of six-colorings; Soifer in Nash and Rassias’ Open Problems in Mathematics)

Determine the set of d for which (1, 1, 1, 1, 1, d) can be realized.

Soifer (1991) found a coloring for d = 1/
√

5. Hoffman and Soifer (1993) also found
one for d =

√
2 − 1. Both of these are part of a family that covers any

0.414 ≈
√

2 − 1 ≤ d ≤ 1/
√

5 ≈ 0.447.

Theorem (Mundinger, Pokutta, S., Zimmer 2024)

The set of realizable types contains the interval [0.354, 0.553].
Published in Geombinatorics Quarterly, XXXIV



3. What Did We Learn? – Results 2 slides
Application 2: Going off-diagonal...

Definition. A c-coloring realizes (d1, . . . , dc) if color i does not contain distance di .

Problem (The continuum of six-colorings; Soifer in Nash and Rassias’ Open Problems in Mathematics)

Determine the set of d for which (1, 1, 1, 1, 1, d) can be realized.

Soifer (1991) found a coloring for d = 1/
√

5. Hoffman and Soifer (1993) also found
one for d =

√
2 − 1. Both of these are part of a family that covers any

0.414 ≈
√

2 − 1 ≤ d ≤ 1/
√

5 ≈ 0.447.

Theorem (Mundinger, Pokutta, S., Zimmer 2024)

The set of realizable types contains the interval [0.354, 0.553].
Published in Geombinatorics Quarterly, XXXIV



3. What Did We Learn? – Results 2 slides
Application 2: Going off-diagonal...

Definition. A c-coloring realizes (d1, . . . , dc) if color i does not contain distance di .

Problem (The continuum of six-colorings; Soifer in Nash and Rassias’ Open Problems in Mathematics)

Determine the set of d for which (1, 1, 1, 1, 1, d) can be realized.

Soifer (1991) found a coloring for d = 1/
√

5. Hoffman and Soifer (1993) also found
one for d =

√
2 − 1. Both of these are part of a family that covers any

0.414 ≈
√

2 − 1 ≤ d ≤ 1/
√

5 ≈ 0.447.

Theorem (Mundinger, Pokutta, S., Zimmer 2024)

The set of realizable types contains the interval [0.354, 0.553].
Published in Geombinatorics Quarterly, XXXIV



3. What Did We Learn? – Results 2 slides
Application 2: Going off-diagonal...

Definition. A c-coloring realizes (d1, . . . , dc) if color i does not contain distance di .

Problem (The continuum of six-colorings; Soifer in Nash and Rassias’ Open Problems in Mathematics)

Determine the set of d for which (1, 1, 1, 1, 1, d) can be realized.

Soifer (1991) found a coloring for d = 1/
√

5. Hoffman and Soifer (1993) also found
one for d =

√
2 − 1. Both of these are part of a family that covers any

0.414 ≈
√

2 − 1 ≤ d ≤ 1/
√

5 ≈ 0.447.

Theorem (Mundinger, Pokutta, S., Zimmer 2024)

The set of realizable types contains the interval [0.354, 0.553].
Published in Geombinatorics Quarterly, XXXIV









Thank you for your attention!

Neural Discovery in Mathematics: Do Machines Dream of Colored Planes?
Konrad Mundinger, Max Zimmer, Aldo Kiem, Christoph Spiegel, and Sebastian Pokutta

Correspondence:
mundinger@zib.de,

spiegel@zib.de

Neural Discovery in Mathematics: Do Machines Dream of Colored Planes?
Konrad Mundinger, Max Zimmer, Aldo Kiem, Christoph Spiegel, and Sebastian Pokutta

Correspondence:
mundinger@zib.de,

spiegel@zib.de

Mathematical Discovery through ML
The Goal: Using ML, prove the existence of objects with certain properties
to advance our understanding of abstract structures.
Case Study: Hadwiger-Nelson Problem / Chromatic Number of the Plane
What is the minimum number of colors c needed to color the Euclidean
plane so that no two points at unit distance share the same color?

Lower bounds have been explored using SAT solvers but new colorings
f : R2 →{1, . . . ,c}, f (x) ̸= f (y) whenever ∥x− y∥= 1 (1)

relied on human mathematical intuition.

Our Contribution
A machine learning framework that enables gradient-based exploration
of the solution spaces. This lead to several new mathematical results
improving bounds for long-standing open problems.

The Methodology
1. Probabilistic Reformulation: Replace discrete colorings f : R2 →

{1, . . . ,c} with probabilistic ones p : R2 → ∆c and minimize:
LR(p) =

∫

[−R,R]2

∫

∂B1(x)

p(x)T p(y)dν(y)dµ(x). (2)

Key Insight
If LR(p) = 0 then argmax(p(x)) satisfies the original constraint a.e.

2. Neural Network Approximation: Use SIRENNNs pθ as universal function
approximators with inherent spectral bias towards structured solutions

.
3. Unsupervised Training: Sample (xi,yi) with ∥xi− yi∥ = 1 and minimize
LR(p) using the approximate gradient

∇θLR(pθ)≈ ∇θ

[
1
n

n

∑
i=1

pθ(xi)
T pθ(yi)

]
. (3)

4. Formalization: Trained pθ only numerical evidence. We extract formal
colorings through fully automated procedures or mathematical analysis.
Minor modifications adapt the framework to different problem variants.

Links for more

Appl. 1: Almost Coloring the Plane
Question: How much of the plane needs to be re-
moved so that we can color the remainder?

History: Pritikin (1998) and Parts (2020) established
99.985% can be colored with c = 6 colors and Parts
(2020) established best bounds for c ∈ {1, . . . ,5}.
Results: Adding an additional "removal" color, we solve

L λ
R (pθ) = LR(pc

θ)+λ
∫

[−R,R]2

pθ(x)c+1 dµ(x). (4)

Re-discovered known constructions for c ̸= 5, but:
Theorem
96.26% of the plane can be colored with 5 colors.

Fig. 2: Almost five-coloring: formal construction covering 96.26% of the plane.

Formalization:
1. Extract periodic structure via tiling vectors v1,v2.
2. Enforce periodicity by prepending change-of-basis
mapping x 7→ M−1x mod 1 and retrain.

3. Discretize finely using parallelogram-structure.
4. Iteratively fix unit-distance conflicts through a mini-

mum vertex cover problem.
5. Resolve all remaining conflicts by removing pixels.

Is this the best possible?
# colors 1 2 3 4 5 6
prior best 77.04% 54.13% 31.20% 8.25% 4.01% 0.02%
our result 77.13% 54.29% 31.51% 8.52% 3.74% 0.04%

Table 1: Fraction of plane requiring removal (lower is better)

Appl. 2: Avoiding Different Distances
Question: Can we avoid distance di in color i?

History: Soifer calls determining which "type"
(1,1,1,1,1,d) is realized by a coloring extremely
difficult. Previously known range was

0.415 ≈
√

2−1 ≤ d ≤ 1/
√

5 ≈ 0.447.

Figure 1: Coloring suggested by NN (L) and formalized version (R).

Results: Through the modified loss
c

∑
k=1

∫

[−R,R]2

∫

∂Bdk(x)

pθ(x)k pθ(y)k dνk(y)dµ(x) (5)

we discovered two novel colorings that extended rangesignificantly. First improvement in 30 years!
Theorem
(1,1,1,1,1,d) can be realized for 0.35 ≤ d ≤ 0.65.

Is this the best possible?
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Fig. 4: Conflict rate vs. distance d revealing extended valid ranges

Erdős also asked for the polychromatic number of
the plane, i.e., the smallest c for which some type
(d1, . . . ,dc) can be realized. We found no evidence
that the current bound of 6 can be improved.

Appl. 2 (cntd.)

Fig. 5: A 6-coloring of the plane where no red points appear at distance
0.45

and no other color has monochromatic unit-distance pairs.

Appl. 3: Avoiding Triangles
Question: What if we avoid triangles?
History: Conjecture of Erdős et al. states that 3 colors
always suffice. Bounds due to Aichholzer & Perz (2019).

Fig. 6: Classification of triangles by required colors

Outlook
Broader Applications:
� Other Hadwiger-Nelson variants?
� Graph-theoretic problems via graph limits?
� Non-differentiable constraints through adversary?

Our approach demonstrates how ML can drive
mathematical discovery and lead to novel insights.

Poster #W-401
Today 11:00–13:30

West Exhibition Hall

Join us!
Master students · PhD students ·

Research scientists · Visiting doctoral fellows
iol.zib.de/join

https://iol.zib.de/join


5. Appendix

Is the off-diagonal result optimal?

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Last colour distance

0.00

0.01

0.02

0.03

0.04

0.05
Fr

ac
ti

on
of

co
nfl

ic
ts

Minimum fraction of conflicts over various runs



5. Appendix

The other off-diagonal coloring



5. Appendix

Constructing colorings through SAT solvers



5. Appendix

The Moser spindle



5. Appendix

Avoiding monochromatic triangles
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