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Zuse 1. The Chromatic Number of the Plane

The Hadwiger-Nelson problem

Problem (Nelson 1950, but also Hadwiger, Erdés, Gardner, Moser, Harary, Tutte, ...)

What is the smallest number of colors suftficient for coloring the plane in such a way
that no two points of the same color are a unit distance apart?
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Problem (Nelson 1950, but also Hadwiger, Erdés, Gardner, Moser, Harary, Tutte, ...)

What is the smallest number of colors suftficient for coloring the plane in such a way
that no two points of the same color are a unit distance apart?

Considering the infinite graph with vertex set [E? and edges {x, y} for any x,y € E?
with ||x — y|| = 1, we are studying the chromatic number of the plane x(E?).
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Problem (Nelson 1950, but also Hadwiger, Erdés, Gardner, Moser, Harary, Tutte, ...)

What is the smallest number of colors suftficient for coloring the plane in such a way
that no two points of the same color are a unit distance apart?

Considering the infinite graph with vertex set [E? and edges {x, y} for any x,y € E?
with ||x — y|| = 1, we are studying the chromatic number of the plane x(E?).

Theorem (N.G. de Bruijn, P. Erdés 1951)
Assuming AoC any graph is k-colorable iff every finite subgraph of it is k-colorable.
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Problem (Nelson 1950, but also Hadwiger, Erdés, Gardner, Moser, Harary, Tutte, ...)

What is the smallest number of colors suftficient for coloring the plane in such a way
that no two points of the same color are a unit distance apart?

Considering the infinite graph with vertex set [E? and edges {x, y} for any x,y € E?
with ||x — y|| = 1, we are studying the chromatic number of the plane x(E?).

Theorem (N.G. de Bruijn, P. Erdés 1951)
Assuming AoC any graph is k-colorable iff every finite subgraph of it is k-colorable.

This problem has a long and complicated history which has been well documented by
Soifer over 14 pages in The New Mathematical Coloring Book (2024) ...
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The history of the problem

Table 3.1 Who created the chromatic number of the plane problem?

Publication | Year |Author(s) Problem creator(s) or source named
[Gar2] 1960 |Gardner “Leo Moser ...writes...”
[Had4] 1961 |Hadwiger Nelson
(after Klee)
[E61.22] 1961 | Erdés “I cannot trace the origin of this problem”
[Cro] 1967 | Croft “A long'®-standing open problem of Erdés”
[Wool] 1973 | Woodall Gardner
[Sim] 1976 |Simmons Erdds, Harary, and Tutte
[E80.38] 1980- |Erdés Hadwiger and Nelson
[E81.23] 1981
[E81.26]
[CFG] 1991 | Croft, Falconer, and | “Apparently due to E. Nelson”
Guy
[KW] 1991 |Klee and Wagon “Posed in 1960-61 by M. Gardner and
Hadwiger”

p. 24 of The New Mathematical Coloring Book by Alexander Soifer, 2024
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Hallard T. Croft Paul Erdés Hugo Hadwiger

Douglas R. Woodall

Diagram 3.1 Who created the chromatic number of the plane problem?

p. 24 of The New Mathematical Coloring Book by Alexander Soifer, 2024
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The history of the problem

The results of my historical research are summarized in Diagram 3.2, where arrows show
passing of the problem from one mathematician to another. In the end, Paul Erdds shares the
problem with the world in numerous talks and articles.

November 1950

Edward Nelson John Isbell )
Nl — -

1957 — Sept 1958

1958 ——
Leo Moser Paul Erdés ) ( Victor Klee )

1958

( m Hugo Hadwiger
~

Diagram 3.2 Passing the baton of the chromatic number of the plane problem

p. 32 of The New Mathematical Coloring Book by Alexander Soifer, 2024
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Lower bounds through unit distance graphs

Lower bounds are given by finding unit distance graphs of large chromatic number.

Definition
A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — E2
of its vertices in the plane s.t. ||[f(u) — f(v)|| =1 if and only {u, v} € E.
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A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — E2
of its vertices in the plane s.t. ||[f(u) — f(v)|| =1 if and only {u, v} € E.

A triangle gives a lower bound of 3 and the Moser spindle a lower bound of 4 (1961).
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Lower bounds are given by finding unit distance graphs of large chromatic number.

Definition

A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — E2
of its vertices in the plane s.t. ||[f(u) — f(v)|| =1 if and only {u, v} € E.

A triangle gives a lower bound of 3 and the Moser spindle a lower bound of 4 (1961).

Theorem (Aubrey D.N.J. de Grey, 2018)

There is a unit distance graph on 20425 vertices with chromatic number 5.



f,}’sﬁy 1. The Chromatic Number of the Plane
Lower bounds through unit distance graphs

A Colorful Unsolved Problem -
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GRAPH THEORY

Decades-0ld Graph Problem Yields to
Amateur Mathematician

By EVELYN LAMB APRIL 17, 2018 26

.number of vertices? The problem, now known as the Hadwiger-Nelson
problem or the problem of finding the chromatic number of the plane, has

piqued the interest of many mathematicians, including.

~Quantamacazine
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Aubrey de Grey and Alexander Soifer, Il Vicino, January 18, 2020 Ronald L. Graham presents Aubrey D.N.J. de Grey the Prize: $1000, San Diego, September
22,2018



.’,}’sﬁy 1. The Chromatic Number of the Plane
Lower bounds through unit distance graphs

Lower bounds are given by finding unit distance graphs of large chromatic number.

Definition

A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — E2
of its vertices in the plane s.t. ||[f(u) — f(v)|| =1 if and only {u, v} € E.

A triangle gives a lower bound of 3 and the Moser spindle a lower bound of 4 (1961).

Theorem (Aubrey D.N.J. de Grey, 2018)

There is a unit distance graph on 20425 vertices with chromatic number 5.

Exoo and Ismailescu found a simpler construction with 627 vertices, Heule one with
553 vertices, and Jaan Parts, as part of Polymath16, one with 510 vertices.
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Upper bounds are given by explicit colorings g : E> — [c] := {1,...,c}, usually
derived through tesselations using simple polytopal shapes, which give

5 < x(E?) < ...
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Upper bounds are given by explicit colorings g : E> — [c] := {1,...,c}, usually
derived through tesselations using simple polytopal shapes, which give

5 < x(E?) <9.
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Upper bounds through colorings

Upper bounds are given by explicit colorings g : E> — [c] := {1,...,c}, usually
derived through tesselations using simple polytopal shapes, which give

5 < x(E?) < 8.
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Upper bounds are given by explicit colorings g : E> — [c] := {1,...,c}, usually
derived through tesselations using simple polytopal shapes, which give

5 < x(E?) < 7.
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Upper bounds through colorings

Upper bounds are given by explicit colorings g : E> — [c] := {1,...,c}, usually
derived through tesselations using simple polytopal shapes, which give

5<x(E*) <7

Question. Can we use computers to find colorings g : E2 — [c] so that

{x € B2 g(x) = g(y) for any y € Bi(x)} = 07
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f,}’sﬁy 1. The Chromatic Number of the Plane
Upper bounds through colorings

Upper bounds are given by explicit colorings g : E> — [c] := {1,...,c}, usually
derived through tesselations using simple polytopal shapes, which give

5 < x(E?) < 7.

Question. Can we use computers to find colorings g : E? — [c] so that
gs 8

{x B | 8(x) = g(y) for any y € Bi(x)} = 07

Idea. Use a parameterized and easily differentiable family gy : E2 — A, and find

arg min E l/ 8o(x) - go(y) dy|x € Ez] ~
0 Bi(x)
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What are Neural Networks?

BERLIN

Input Hidden Layer Qutput
Layer Layer

Figure: Feedforward neural network or multilayer perceptron architecture.
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fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 RelU activation
Convolution Convolution A /—M

(5 x 5) kernel (5 x 5) kernel

X L Max-Pooling = ) Max-Pooling (with
valid padding (2x2) valid padding (2x2) /NN dropout)
7 \d

INPUT n1channels nl channels n2 channels n2 channels \\ ] 9

(28x28x1) (24 x24 xnl) (12x12 xn1) (8x8xn2) (4x4xn2) U/ OUTPUT

n3 units

Figure: Convolutional neural network architecture.
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Figure: Transformer neural network architecture.
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What are Neural Networks?

Just a parameterized family of functions gy with some convenient properties...

-

input ——

Blackbox

heavily parameterized
easily differentiable
universal approximator

~

——— output

Theorem (Universal Approximation Theorem)



P 2. Neural Networks as Universal Approximators

BERLIN

What are Neural Networks?

Just a parameterized family of functions gy with some convenient properties...

~

input ——

Blackbox

heavily parameterized
easily differentiable
universal approximator

~N

——— output

Theorem (Universal Approximation Theorem)

Feedforward neural networks with certain activation functions are dense (w.r.t.
compact convergence) in the space of continuous functions.



,Z,:’sﬁy 2. Neural Networks as Universal Approximators
How do we find the correct parameters?

Idea. What if we use batch gradient descent to ‘train’ gy : E> — Ag to minimize

L(0) = / / go(x) - go(y) dy dx?
[7b’b]><[7b7b] BI(X)
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Idea. What if we use batch gradient descent to ‘train’ gy : E> — Ag to minimize

L(0) = / / go(x) - go(y) dy dx?
[7b’b]><[7b7b] BI(X)

Algorithm. We sample points x() € [—b, b] x [—b, b] and y() € B;(x) and use that

Vol (6) ~ VoL (6 Z Vo go(x) - go(y')/m,



f,}’sﬁy 2. Neural Networks as Universal Approximators
How do we find the correct parameters?

Idea. What if we use batch gradient descent to ‘train’ gy : E> — Ag to minimize
Lo) = | L, &) gly)dy ox?
[7b’b]><[7b7b] BI(X)
Algorithm. We sample points x() € [—b, b] x [=b, b] and y{) € B;(x) and use that

Vol(0) ~ VoL(0 Zve go(x1) - go(y)/m,

to adjust the parameters 6 with an appropriate step size a, through

Orr1 = Ok — o VgL (6).
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Unfortunately this coloring was already known...
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FIG. 3. A good T-coloring of (R2, 1).

Theorem (Pritikin 1995; refined by Parts 2020)

99.985% of the plane can be colored with 6 colors such that no two points of the same
color are a unit distance apart.
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FIG. 3. A good T-coloring of (R2, 1).

Theorem (Pritikin 1995; refined by Parts 2020)

99.985% of the plane can be colored with 6 colors such that no two points of the same
color are a unit distance apart.

Corollary

Any unit distance graph with chromatic number 7 must have order at least 6993.
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Going off-diagonal...

A variant. A c-coloring of the plane has coloring type or realizes (d, ..., dc) if color i
does not contain any points at distance d;.

Problem (The continuum of six-colorings; Soifer in Nash and Rassias’ Open Problems in Mathematics)

Determine the set of d for which (1,1,1,1,1,d) can be realized.

Soifer found a coloring for d = 1/\/5 in 1991. Hoffman and Soifer also found one for
d =+/2 —1in 1993. Both of these are part of a family that covers any

0.414 ~ V2 — 1< d <1/V/5 ~ 0.447.

Theorem (Mundinger, Pokutta, S., Zimmer 2024)

There is a coloring realizing (1,1,1,1,1,d) for any 0.418 < d < 0.657 and
another (family of) colorings covers any 0.354 < d < 0.553.
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Is this optimal?

percentage of points with conflicts

0.5 1.0 1.5 2.0 2.5

o
o

Figure: Numerical results showing the percentage of points with some conflict for a given
forbidden distance d in the sixth color found over several minimized over several runs.
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Open problems and final remarks

The underlying optimization approach is very flexible:

= Can we formalize these colorings as Voronoi diagrams?
= Can we improve the upper bound of the chromatic number of E3 from 15 to 14?7
= Can we apply the same ideas to generate graphons and other limit structures?

= Can we use adversarial networks when the objectiv is non-differentiable?

Full description of the two colorings is available at arxiv.org/abs/2404.05509.


arxiv.org/abs/2404.05509
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Thank you for your attention!
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