
zuse INSTITUTE
BERLIN

Ongoing work with ...

Aldo Kiem ZIB / TU Berlin

Sebastian Pokutta
ZIB / TU Berlin

The four-color Ramsey Multiplicity of Triangles

1. The Ramsey Multiplicity Problem

3 slides
2. An intuitive Symbolic Approach

2 slides
3. Formalisation through Flag Algebras
4. Solving very large problems

3 slides

```
Theorem (Ramsey 1930 - Multicolor Version)
```

For any $t_{1}, \ldots, t_{c} \in \mathbb{N}$ there exists $R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ s.t. any c-edge-coloring of K_{n} with $n \geq R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ contains an clique of size t_{i} with edges colored i for some $1 \leq i \leq c$.

A well-known question
Can we determine $R_{t_{1}, \ldots, t_{c}}$?

A related question
How many cliques are required?

Theorem (Goodman 1959 - Asymptotic Version)
Asymptotically at least $1 / 4$ of all triangles are monochromatic in any 2-edge-coloring.

```
Theorem (Ramsey 1930 - Multicolor Version)
```

For any $t_{1}, \ldots, t_{c} \in \mathbb{N}$ there exists $R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ s.t. any c-edge-coloring of K_{n} with $n \geq R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ contains an clique of size t_{i} with edges colored i for some $1 \leq i \leq c$.

A well-known question
Can we determine $R_{t_{1}, \ldots, t_{c}}$?

A related question

How many cliques are required?

Theorem (Goodman 1959 - Asymptotic Version)
Asymptotically at least $1 / 4$ of all triangles are monochromatic in any 2-edge-coloring.

```
Theorem (Ramsey 1930 - Multicolor Version)
```

For any $t_{1}, \ldots, t_{c} \in \mathbb{N}$ there exists $R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ s.t. any c-edge-coloring of K_{n} with $n \geq R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ contains an clique of size t_{i} with edges colored i for some $1 \leq i \leq c$.

A well-known question

Can we determine $R_{t_{1}, \ldots, t_{c}}$?

A related question

How many cliques are required?

Theorem (Goodman 1959 - Asymptotic Version)
Asymptotically at least $1 / 4$ of all triangles are monochromatic in any 2-edge-coloring.

Beyond Goodman's Result

Notation. Let $\mathcal{G}_{n}=\left\{G: E\left(K_{n}\right) \rightarrow[c]\right\}$ denote all c-edge-colorings of K_{n}, G_{i} the subgraph of K_{n} given by color i and $k_{t_{i}}\left(G_{i}\right)$ the fraction of t_{i}-cliques in G_{i}.

Problem (Ramsey Multiplicity)

What is the value of $m_{t_{1}, \ldots, t_{c}}=\lim _{n} \min _{G \in \mathcal{G}_{n}} k_{t_{1}}\left(G_{1}\right)+\ldots+k_{t_{c}}\left(G_{c}\right)$?
The success of the binomial random graph for $m_{3,3}$ lead to the following conjecture.
Conjecture (Erdos 1962)
$m_{t, t}=2^{1-\binom{t}{2}}$ for any $t \geq 2$. False for $t \geq 4$ (Thomason 1989)

Determining even $m_{4,4}$ is still an open and very hard problem... But what if we only consider triangles and increase the number of colors?

Beyond Goodman's Result

Notation. Let $\mathcal{G}_{n}=\left\{G: E\left(K_{n}\right) \rightarrow[c]\right\}$ denote all c-edge-colorings of K_{n}, G_{i} the subgraph of K_{n} given by color i and $k_{t_{i}}\left(G_{i}\right)$ the fraction of t_{i}-cliques in G_{i}.

Problem (Ramsey Multiplicity)

What is the value of $m_{t_{1}, \ldots, t_{c}}=\lim _{n} \min _{G \in \mathcal{G}_{n}} k_{t_{1}}\left(G_{1}\right)+\ldots+k_{t_{c}}\left(G_{c}\right)$?
The success of the binomial random graph for $m_{3,3}$ lead to the following conjecture.
Conjecture (Erdős 1962)
$m_{t, t}=2^{1-\binom{t}{2}}$ for any $t \geq 2$.
Determining even $m_{4,4}$ is still an open and very hard problem... But what if we only consider triangles and increase the number of colors?

Beyond Goodman's Result

Notation. Let $\mathcal{G}_{n}=\left\{G: E\left(K_{n}\right) \rightarrow[c]\right\}$ denote all c-edge-colorings of K_{n}, G_{i} the subgraph of K_{n} given by color i and $k_{t_{i}}\left(G_{i}\right)$ the fraction of t_{i}-cliques in G_{i}.

Problem (Ramsey Multiplicity)

What is the value of $m_{t_{1}, \ldots, t_{c}}=\lim _{n} \min _{G \in \mathcal{G}_{n}} k_{t_{1}}\left(G_{1}\right)+\ldots+k_{t_{c}}\left(G_{c}\right)$?

The success of the binomial random graph for $m_{3,3}$ lead to the following conjecture.
Conjecture (Erdős 1962)
$m_{t, t}=2^{1-\binom{t}{2}}$ for any $t \geq 2$.
False for $t \geq 4$ (Thomason 1989)
Determining even $m_{4,4}$ is still an open and very hard problem... But what if we only consider triangles and increase the number of colors?

```
Theorem (Goodman 1959 - Asymptotic Version)
```

$m_{3,3}=1 / 4$.
Besides random graphs, a matching upper bound is for example also given by complete bipartite graphs, i.e., the blowup of R_{3}-coloring (the 'one-color' Ramsey number).

Theorem (Cummings et al. 2013)

$m_{3,3,3}=1 / 25$ and all extremal sequences are based on blowups of the $R_{3,3}$-coloring.

Using either of the two $R_{3,3,3}$-colorings, one has $m_{3,3,3,3} \leq 1 / 256$.

```
Theorem (Kiem, Pokutta, S. 2023 + )
```

$m_{3,3,3,3} \geq 1 / 256-\varepsilon$ for some small ε.

1. The Ramsey Multiplicity Problem

The Ramsey Multiplicity of Triangles

Theorem (Goodman 1959 - Asymptotic Version)
$m_{3,3}=1 / 4$.

Besides random graphs, a matching upper bound is for example also given by complete bipartite graphs, i.e., the blowup of R_{3}-coloring (the 'one-color' Ramsey number).

Theorem (Cummings et al. 2013)
$m_{3,3,3}=1 / 25$ and all extremal sequences are based on blowups of the $R_{3,3}$-coloring.

Using either of the two $R_{3,3,3}$-colorings, one has $m_{3,3,3,3} \leq 1 / 256$.
Theorem (Kiem, Pokutta, S. 2023 +)
$m_{3,3,3,3} \geq 1 / 256-\varepsilon$ for some small ε.

1. The Ramsey Multiplicity Problem

The Ramsey Multiplicity of Triangles

Theorem (Goodman 1959 - Asymptotic Version)

$m_{3,3}=1 / 4$.

Besides random graphs, a matching upper bound is for example also given by complete bipartite graphs, i.e., the blowup of R_{3}-coloring (the 'one-color' Ramsey number).

Theorem (Cummings et al. 2013)
$m_{3,3,3}=1 / 25$ and all extremal sequences are based on blowups of the $R_{3,3}$-coloring.

Using either of the two $R_{3,3,3}$-colorings, one has $m_{3,3,3,3} \leq 1 / 256$.
Theorem (Kiem, Pokutta, S. 2023+)
$m_{3,3,3,3} \geq 1 / 256-\varepsilon$ for some small ε.
2. An intuitive Symbolic Approach

2 slides
3. Formalisation through Flag Algebras
4. Solving very large problems

3 slides
2. An intuitive Symbolic Approach

Goodman's original proof
We want to show that

$$
\Omega_{0}+\frac{0}{2} \geq \frac{1}{4} .
$$

We use that

(II) $\mathfrak{i}=\Omega_{0}+2 / 3 \AA+1 / 3 \AA_{0}$,
(III) $\llbracket \mathfrak{O}^{2} \rrbracket=\Omega_{0}+1 / 3 \AA$

Equation (3) in Goodman's paper
Equation (1) in Goodman's paper,
where $\bullet^{2}:=\AA_{0}+\AA_{0}$ and $\mathbb{I} \mathbb{\rrbracket}$ is the downward operator. (I) $-3(I I)+3(I I I)$ gives

$$
\Omega_{0}+\therefore=1-3!+3 \llbracket!^{2} \rrbracket \geq 1-3!+3 \varrho^{2}=3(!-1 / 2)^{2}+1 / 4 \geq 1 / 4,
$$

where we used $\llbracket \varrho^{2} \rrbracket \geq \llbracket!\rrbracket^{2}=\emptyset_{0}^{2}(C S)$ for the first inequality.
2. An intuitive Symbolic Approach

Goodman's original proof

We want to show that

$$
\Omega_{0}+\underset{0 . \ldots}{\circ} \geq \frac{1}{4} .
$$

We use that

(II) $i=\Omega=2 / 3 \ldots+1 / 3 \AA$, \AA,
(III) $\llbracket!^{2} \rrbracket=\Omega_{0}+1 / 3 \AA$

Equation (3) in Goodman's paper
Equation (4) in Goodman's paper,
where $\bullet^{2}:=\Omega_{0}+\ldots$ and $\llbracket!\rrbracket$ is the downward operator. $(1)-3(I I)+3(I I I)$ gives

$$
\AA{ }_{0}+\ldots=1-3!+3 \llbracket 饣_{0}^{2} \rrbracket \geq 1-3!+3 \varrho_{0}^{2}=3(!-1 / 2)^{2}+1 / 4 \geq 1 / 4
$$

2. An intuitive Symbolic Approach

Goodman's original proof

We want to show that

$$
\Omega_{0}+\frac{0}{2} \geq \frac{1}{4} .
$$

We use that
(I) $1=\underset{0}{\Omega}+\underset{0}{\ldots}+\underset{0}{\circ}+\underset{0}{\circ}+\underset{0}{\circ}$,

(III) $\llbracket \dot{0}^{2} \rrbracket=\Omega_{0}+1 / 3 \ldots$

Equation (3) in Goodman's paper
Equation (4) in Goodman's paper,
where $\bullet^{2}:=\Omega_{0}+\AA_{0}$ and $\llbracket \rrbracket$ is the downward operator. $(\mathrm{I})-3(\mathrm{II})+3(\mathrm{III})$ gives

$$
\Omega_{0}+\underset{\circ}{\circ} \circ=1-3!+3 \llbracket!^{2} \rrbracket \geq 1-3!+3 \emptyset_{0}^{2}=3(!-1 / 2)^{2}+1 / 4 \geq 1 / 4
$$

where we used $\llbracket!^{2} \rrbracket \geq \llbracket!\rrbracket^{2}=\emptyset_{0}^{2}(\mathrm{CS})$ for the first inequality.

Rephrasing Goodman's proof

Instead of applying CS, we could embrace the downward operator through

We can already appeal to the weaker $\llbracket F^{2} \rrbracket \geq 0$ instead of $\llbracket F^{2} \rrbracket \geq \llbracket F \rrbracket^{2}(\mathrm{CS})$.
Using $\dot{0}+\dot{\vdots}=1$, we can further transform the statement to

$$
\begin{aligned}
& \Omega_{0}+{ }_{0} \overbrace{0}=\llbracket 3 / 4\left(\begin{array}{l}
0 \\
0
\end{array}-\right)_{0}^{0})^{2} \rrbracket+1 / 4=\llbracket\left(\left(\begin{array}{cc}
-\sqrt{3} / 2 & \sqrt{3} / 2 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
\vdots \\
0
\end{array}\right)\right)^{2} \rrbracket+1 / 4
\end{aligned}
$$

This looks suspiciously like a Semidefinite Programming (SDP) problem ...

Rephrasing Goodman's proof

Instead of applying CS, we could embrace the downward operator through

We can already appeal to the weaker $\llbracket F^{2} \rrbracket \geq 0$ instead of $\llbracket F^{2} \rrbracket \geq \llbracket F \rrbracket^{2}(\mathrm{CS})$.
Using $!+!=1$, we can further transform the statement to

$$
\begin{aligned}
& \Omega_{0}+\overbrace{0}^{\circ}=\llbracket 3 / 4\binom{0}{0}^{2} \rrbracket+1 / 4=\llbracket\left(\left(\begin{array}{cc}
-\sqrt{3} / 2 \sqrt{3} / 2 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
\bullet \\
\vdots \\
\vdots
\end{array}\right)\right)^{2} \rrbracket+1 / 4
\end{aligned}
$$

Rephrasing Goodman's proof

Instead of applying CS, we could embrace the downward operator through

We can already appeal to the weaker $\llbracket F^{2} \rrbracket \geq 0$ instead of $\llbracket F^{2} \rrbracket \geq \llbracket F \rrbracket^{2}(\mathrm{CS})$.
Using ${ }_{0}+{ }_{\mathbf{!}}^{\mathbf{0}}=1$, we can further transform the statement to

$$
\begin{aligned}
& \varrho_{0}+\underset{0}{\circ} \ldots 0 . \llbracket 3 / 4(\emptyset-\stackrel{\bullet}{0})^{2} \rrbracket+1 / 4=\llbracket\left(\left(\begin{array}{cc}
-\sqrt{3} / 2 & \sqrt{3} / 2 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
\bullet \\
\vdots \\
\vdots
\end{array}\right)\right)^{2} \rrbracket+1 / 4 \\
& =\left\langle\left(\begin{array}{cc}
3 / 4 & -3 / 4 \\
-3 / 4 & 3 / 4
\end{array}\right), \llbracket\left(\begin{array}{ccc}
\bullet & \bullet & \vdots \\
0 & 0 & \vdots \\
\vdots & \vdots & \vdots^{2} \\
0 & 0 & 0
\end{array}\right) \rrbracket\right\rangle+1 / 4 .
\end{aligned}
$$

Rephrasing Goodman's proof

Instead of applying CS, we could embrace the downward operator through

We can already appeal to the weaker $\llbracket F^{2} \rrbracket \geq 0$ instead of $\llbracket F^{2} \rrbracket \geq \llbracket F \rrbracket^{2}(\mathrm{CS})$.
Using $\dot{\varrho}+{ }_{\bullet}^{\bullet}=1$, we can further transform the statement to

$$
\begin{aligned}
& \varrho_{0}+\underset{0}{\circ} \ldots 0 . \llbracket 3 / 4(\emptyset-\stackrel{\bullet}{0})^{2} \rrbracket+1 / 4=\llbracket\left(\left(\begin{array}{cc}
-\sqrt{3} / 2 & \sqrt{3} / 2 \\
0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
\bullet \\
\vdots \\
\vdots
\end{array}\right)\right)^{2} \rrbracket+1 / 4 \\
& =\left\langle\left(\begin{array}{cc}
3 / 4 & -3 / 4 \\
-3 / 4 & 3 / 4
\end{array}\right), \llbracket\left(\begin{array}{ccc}
0 & 0 & \vdots \\
0 & 0 & \vdots \\
\vdots & \vdots & a^{2} \\
0 & 0 & 0
\end{array}\right) \rrbracket\right\rangle+1 / 4 .
\end{aligned}
$$

This looks suspiciously like a Semidefinite Programming (SDP) problem ...
2. An intuitive Symbolic Approach
3. Formalisation through Flag Algebras

2 slides
4. Solving very large problems

3 slides
3. Formalisation through Flag Algebras

Flag Algebras

Notation. A type τ is a fully labelled coloring and a flag $F \in \mathcal{F}^{\tau}$ of type τ is a coloring $\downarrow F$ with partial labels inducing τ. Write \mathcal{F}_{n}^{τ} for flags of order n and note that $\mathcal{G}_{n}=\mathcal{F}_{n}^{\varnothing}$.

Definition (The Flag Algebra of type τ; Razborov 2007)

The flag algebra \mathcal{A}^{τ} is given by considering $\mathbb{R} \mathcal{F}^{\tau} / \mathcal{K}$ for

$$
\mathcal{K}=\left\{F-\sum_{F^{\prime} \in \mathcal{F}_{n}^{\top}} p\left(F ; F^{\prime}\right) F^{\prime}: F \in \mathcal{F}^{\tau}, n \geq v(F)\right\}
$$

and defining the product

$$
F_{1} \cdot F_{2}=\sum_{F^{\prime} \in \mathcal{F}_{n}^{\top}} p\left(F_{1}, F_{2} ; F^{\prime}\right) F^{\prime} \quad \text { for any } n \geq v\left(F_{1}\right)+v\left(F_{2}\right)-v(\tau) .
$$

The downward operator $\llbracket \cdot \rrbracket_{\tau}$ is given by linearly extending $\llbracket F \rrbracket_{\tau}=q_{\tau}(F) \downarrow F \in \mathcal{A}^{\varnothing}$.
3. Formalisation through Flag Algebras

Flag Algebras

Notation. A type τ is a fully labelled coloring and a flag $F \in \mathcal{F}^{\tau}$ of type τ is a coloring $\downarrow F$ with partial labels inducing τ. Write \mathcal{F}_{n}^{τ} for flags of order n and note that $\mathcal{G}_{n}=\mathcal{F}_{n}^{\varnothing}$.

Definition (The Flag Algebra of type τ; Razborov 2007)

The flag algebra \mathcal{A}^{τ} is given by considering $\mathbb{R} \mathcal{F}^{\tau} / \mathcal{K}$ for

$$
\mathcal{K}=\left\{F-\sum_{F^{\prime} \in \mathcal{F}_{n}^{\tau}} p\left(F ; F^{\prime}\right) F^{\prime}: F \in \mathcal{F}^{\tau}, n \geq v(F)\right\}
$$

and defining the product

$$
F_{1} \cdot F_{2}=\sum_{F^{\prime} \in \mathcal{F}_{n}^{\tau}} p\left(F_{1}, F_{2} ; F^{\prime}\right) F^{\prime} \quad \text { for any } n \geq v\left(F_{1}\right)+v\left(F_{2}\right)-v(\tau)
$$

The downward operator $\llbracket \cdot \rrbracket_{\tau}$ is given by linearly extending $\llbracket F \rrbracket_{\tau}=q_{\tau}(F) \downarrow F \in \mathcal{A}^{\varnothing}$.
3. Formalisation through Flag Algebras

Flag Algebras

Notation. A type τ is a fully labelled coloring and a flag $F \in \mathcal{F}^{\tau}$ of type τ is a coloring $\downarrow F$ with partial labels inducing τ. Write \mathcal{F}_{n}^{τ} for flags of order n and note that $\mathcal{G}_{n}=\mathcal{F}_{n}^{\varnothing}$.

Definition (The Flag Algebra of type τ; Razborov 2007)

The flag algebra \mathcal{A}^{τ} is given by considering $\mathbb{R} \mathcal{F}^{\tau} / \mathcal{K}$ for

$$
\mathcal{K}=\left\{F-\sum_{F^{\prime} \in \mathcal{F}_{n}^{\tau}} p\left(F ; F^{\prime}\right) F^{\prime}: F \in \mathcal{F}^{\tau}, n \geq v(F)\right\}
$$

and defining the product

$$
F_{1} \cdot F_{2}=\sum_{F^{\prime} \in \mathcal{F}_{n}^{\tau}} p\left(F_{1}, F_{2} ; F^{\prime}\right) F^{\prime} \quad \text { for any } n \geq v\left(F_{1}\right)+v\left(F_{2}\right)-v(\tau)
$$

The downward operator $\llbracket \cdot \rrbracket_{\tau}$ is given by linearly extending $\llbracket F \rrbracket_{\tau}=q_{\tau}(F) \downarrow F \in \mathcal{A}^{\varnothing}$.
3. Formalisation through Flag Algebras

The Semantic Cone of Flag Algebras

Any convergent sequence $G_{n} \in \mathcal{G}$ defines a limit functional $p\left(F, G_{n}\right) \rightarrow \varphi(F)$ on $\mathcal{A}^{\varnothing}$.
Theorem (Razborov 2007)
φ is a limit functional if and only if $\varphi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})=\left\{\varphi \in \operatorname{Hom}(\mathcal{A}, \mathbb{R}):\left.\varphi\right|_{\mathcal{G}} \equiv 0\right\}$.
We can phrase our problem of minimizing $F_{0}=\Omega_{0}+{ }_{0}^{\circ}$.

$$
\max \left\{\lambda \in \mathbb{R}: F_{0}-\lambda \varnothing \in \mathcal{S}=\left\{F \in \mathcal{A}: \varphi(F) \geq 0 \text { for all } \varphi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})\right\}\right\} .
$$

Directly optimizing over the semantic cone is hard, but we can use SOS through

$$
\left.\max _{Q \succeq 0} \min _{G \in \mathcal{G}_{N}} d\left(F_{0} ; G\right)-\sum_{\tau}\left\langle Q,\left(\llbracket d\left(F_{1}, F_{2} ; G\right)\right]_{\tau}\right)_{F_{1}, F_{2} \in \mathcal{F}_{f}^{\tau}}\right\rangle
$$

where $0 \leq v(\tau) \leq N-2$ and $f=\lfloor(N-v(\tau)) / 2\rfloor$

The Semantic Cone of Flag Algebras

Any convergent sequence $G_{n} \in \mathcal{G}$ defines a limit functional $p\left(F, G_{n}\right) \rightarrow \varphi(F)$ on $\mathcal{A}^{\varnothing}$.

Theorem (Razborov 2007)

φ is a limit functional if and only if $\varphi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})=\left\{\varphi \in \operatorname{Hom}(\mathcal{A}, \mathbb{R}):\left.\varphi\right|_{\mathcal{G}} \equiv 0\right\}$.
We can phrase our problem of minimizing $F_{0}=\Omega_{0}+{ }_{0}^{\circ}, \ldots$ as the optimization problem

$$
\max \left\{\lambda \in \mathbb{R}: F_{0}-\lambda \varnothing \in \mathcal{S}=\left\{F \in \mathcal{A}: \varphi(F) \geq 0 \text { for all } \varphi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})\right\}\right\}
$$

Directly optimizing over the semantic cone is hard, but we can use SOS through

$$
\max _{Q \succeq 0} \min _{G \in \mathcal{G}_{N}} d\left(F_{0} ; G\right)-\sum_{\tau}\left\langle Q,\left(\left[\left[d\left(F_{1}, F_{2} ; G\right)\right]_{\tau}\right)_{F_{1}, F_{2} \in \mathcal{F}_{f}^{\tau}}\right\rangle\right.
$$

where $0 \leq v(\tau) \leq N-2$ and $f=\lfloor(N-v(\tau)) / 2\rfloor$

The Semantic Cone of Flag Algebras

Any convergent sequence $G_{n} \in \mathcal{G}$ defines a limit functional $p\left(F, G_{n}\right) \rightarrow \varphi(F)$ on $\mathcal{A}^{\varnothing}$.
Theorem (Razborov 2007)
φ is a limit functional if and only if $\varphi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})=\left\{\varphi \in \operatorname{Hom}(\mathcal{A}, \mathbb{R}):\left.\varphi\right|_{\mathcal{G}} \equiv 0\right\}$.
We can phrase our problem of minimizing $F_{0}=\Omega_{0}+\stackrel{\circ}{0}$, as the optimization problem

$$
\max \left\{\lambda \in \mathbb{R}: F_{0}-\lambda \varnothing \in \mathcal{S}=\left\{F \in \mathcal{A}: \varphi(F) \geq 0 \text { for all } \varphi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})\right\}\right\}
$$

Directly optimizing over the semantic cone is hard, but we can use SOS through

$$
\max _{Q \succeq 0} \min _{G \in \mathcal{G}_{N}} d\left(F_{0} ; G\right)-\sum_{\tau}\left\langle Q,\left(\left[\left[d\left(F_{1}, F_{2} ; G\right)\right]\right]_{\tau}\right)_{F_{1}, F_{2} \in \mathcal{F}_{f}^{\tau}}\right\rangle
$$

where $0 \leq v(\tau) \leq N-2$ and $f=\lfloor(N-v(\tau)) / 2\rfloor$.
2. An intuitive Symbolic Approach
3. Formalisation through Flag Algebras

2 slides
4. Solving very large problems

3 slides
4. Solving very large problems

Leveraging Symmetries

Goodman's result relies on computations on colorings of order $N=3$:

$$
\max _{Q \succeq 0} \min \left\{1-\left\langle Q,\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{cc}
1 / 3 & 1 / 3 \\
1 / 3 & 0
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{cc}
0 & 1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right)\right\rangle, 1-\left\langle Q,\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\rangle\right\}=1 / 4
$$

Increasing N usually both improves the bound and makes the SDP harder to solve.

N	value	time	memory
6	0.02875	$0.2 \mathrm{~s} \pm 0.0$	$81.2 \mathrm{MB} \pm 24.7$
7	0.02918	$4.9 \mathrm{~s} \pm 0.1$	$126.9_{\mathrm{MB}} \pm 26.3$
8	0.02942	$1.8 \mathrm{~h} \pm 0.1$	$1.8 \mathrm{~GB} \pm 0.0$

Table: Complexity of SDP problem formulations for $m_{4,4}$ using CSDP

How can we use combinatorial information to reduce these SDP formulations?

Leveraging Symmetries

Goodman's result relies on computations on colorings of order $N=3$:

$$
\max _{Q \succeq 0} \min \left\{1-\left\langle Q,\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{cc}
1 / 3 & 1 / 3 \\
1 / 3 & 0
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{cc}
0 & 1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right)\right\rangle, 1-\left\langle Q,\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\rangle\right\}=1 / 4
$$

Increasing N usually both improves the bound and makes the SDP harder to solve.

N	value	time	memory
6	0.02875	$0.2 \mathrm{~s} \pm 0.0$	$81.2 \mathrm{MB} \pm 24.7$
7	0.02918	$4.9 \mathrm{~s} \pm 0.1$	$126.9_{\mathrm{MB}} \pm 26.3$
8	0.02942	$1.8 \mathrm{~h} \pm 0.1$	$1.8 \mathrm{~GB} \pm 0.0$

Table: Complexity of SDP problem formulations for $m_{4,4}$ using CSDP

How can we use combinatorial information to reduce these SDP formulations?

Bounds through Semidefinite Programming

Method 1 Reduce the number of constraints and blocks by combining constraints.

$$
\max _{Q \succeq 0} \min \left\{1-\left\langle Q,\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{l}
1 / 6 \\
1 / 31 / 3 \\
1 / 3
\end{array}\right)\right\rangle\right\},
$$

Strictly stronger than considering partitions (Balogh et al. 2017).
Method 2 Reduce the number of variables by block diagonalization.

$$
\max _{x, y \geq 0} \min \left\{1-\frac{x}{2}-\frac{y}{2},-\frac{x}{2}+\frac{y}{6}\right\} .
$$

Generalizes the antiinvariant split of Razborov (2010). Similar to diagonalization in SOS literature (Gatermann and Parrilo 2004). See also Bachoc et al. (2012).

Bounds through Semidefinite Programming

Method 1 Reduce the number of constraints and blocks by combining constraints.

$$
\max _{Q \succeq 0} \min \left\{1-\left\langle Q,\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{c}
1 / 6 \\
1 / 3 / 3 \\
1 / 3
\end{array}\right)\right\rangle\right\},
$$

Strictly stronger than considering partitions (Balogh et al. 2017).
Method 2 Reduce the number of variables by block diagonalization.

$$
\max _{x, y \geq 0} \min \left\{1-\frac{x}{2}-\frac{y}{2},-\frac{x}{2}+\frac{y}{6}\right\} .
$$

Generalizes the antiinvariant split of Razborov (2010). Similar to diagonalization in SOS literature (Gatermann and Parrilo 2004). See also Bachoc et al. (2012).
4. Solving very large problems

Leveraging Symmetries

We derived our result with $N=6$ vertices, giving a $3 G B+$ SDP with 130 k variables and 120 k constraints that takes a day to solve numerically.

Challenge: Turn the numerical solution into rigorous proof. Getting a small ε below the bound is easy (round the LDL-decomposition) but hitting the exact value requires formulating and solving an appropriate exact Linear Program (LP).

```
We also derived new (non-tight) lower bounds for m4,4 and m5,5
N=9 vertices, where numerically solving the SDP takes weeks.
```

Open Problem: $m_{3, \ldots, 3}=\left(R_{3, \ldots, 3}-1\right)^{-2}$ for all c ?

Leveraging Symmetries

We derived our result with $N=6$ vertices, giving a $3 G B+$ SDP with 130 k variables and 120 k constraints that takes a day to solve numerically.

Challenge: Turn the numerical solution into rigorous proof. Getting a small ε below the bound is easy (round the LDL-decomposition) but hitting the exact value requires formulating and solving an appropriate exact Linear Program (LP).

```
We also derived new (non-tight) lower bounds for m4,4 and m5,5 using 2-colorings on
N=9 vertices, where numerically solving the SDP takes weeks.
```

Open Problem: $m_{3, \ldots, 3}=\left(R_{3, \ldots, 3}-1\right)^{-2}$ for all c ?

Leveraging Symmetries

We derived our result with $N=6$ vertices, giving a $3 G B+$ SDP with 130 k variables and 120 k constraints that takes a day to solve numerically.

Challenge: Turn the numerical solution into rigorous proof. Getting a small ε below the bound is easy (round the LDL-decomposition) but hitting the exact value requires formulating and solving an appropriate exact Linear Program (LP).

We also derived new (non-tight) lower bounds for $m_{4,4}$ and $m_{5,5}$ using 2-colorings on $N=9$ vertices, where numerically solving the SDP takes weeks.

Open Problem: $m_{3, \ldots, 3}=\left(R_{3, \ldots, 3}-1\right)^{-2}$ for all c ?
4. Solving very large problems

Leveraging Symmetries

We derived our result with $N=6$ vertices, giving a $3 G B+$ SDP with 130 k variables and 120 k constraints that takes a day to solve numerically.

Challenge: Turn the numerical solution into rigorous proof. Getting a small ε below the bound is easy (round the LDL-decomposition) but hitting the exact value requires formulating and solving an appropriate exact Linear Program (LP).

We also derived new (non-tight) lower bounds for $m_{4,4}$ and $m_{5,5}$ using 2-colorings on $N=9$ vertices, where numerically solving the SDP takes weeks.

Open Problem: $m_{3, \ldots, 3}=\left(R_{3, \ldots, 3}-1\right)^{-2}$ for all c ?

Thank you for your attention!

5. Appendix

Selected related literature

- Thomason, A. "Graph products and monochromatic multiplicities." Combinatorica 17.1 (1997): 125-134.
- Razborov, A. "Flag algebras." The Journal of Symbolic Logic 72.4 (2007): 1239-1282.
- Razborov, A. "On 3-hypergraphs with forbidden 4-vertex configurations." SIAM Journal on Discrete Mathematics 24.3 (2010): 946-963.
- Cummings, J., et al. "Monochromatic triangles in three-coloured graphs." Journal of Combinatorial Theory, Series B 103.4 (2013): 489-503.
- Balogh, J., et al. "Rainbow triangles in three-colored graphs." Journal of Combinatorial Theory, Series B 126 (2017): 83-113.
- Gatermann, J., and Parrilo, P.. "Symmetry groups, semidefinite programs, and sums of squares." Journal of Pure and Applied Algebra 192.1-3 (2004): 95-128.
- Bachoc, C., et al. "Invariant semidefinite programs." Handbook on semidefinite, conic and polynomial optimization. Springer, Boston, MA, 2012. 219-269.

