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The four-color Ramsey Multiplicity of Triangles
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1. The Ramsey Multiplicity Problem 3 slides

The Ramsey Multiplicity Problem

Theorem (Ramsey 1930 – Multicolor Version)

For any t1, . . . , tc ∈ N there exists Rt1,...,tc ∈ N s.t. any c-edge-coloring of Kn with
n ≥ Rt1,...,tc ∈ N contains an clique of size ti with edges colored i for some 1 ≤ i ≤ c.

A well-known question

Can we determine Rt1,...,tc ?

A related question

How many cliques are required?

Theorem (Goodman 1959 – Asymptotic Version)

Asymptotically at least 1/4 of all triangles are monochromatic in any 2-edge-coloring.
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1. The Ramsey Multiplicity Problem 3 slides

Beyond Goodman’s Result
Notation. Let Gn = {G : E (Kn) → [c]} denote all c-edge-colorings of Kn, Gi the
subgraph of Kn given by color i and kti (Gi) the fraction of ti -cliques in Gi .

Problem (Ramsey Multiplicity)

What is the value of mt1,...,tc = limn minG∈Gn kt1(G1) + . . . + ktc (Gc)?

The success of the binomial random graph for m3,3 lead to the following conjecture.

Conjecture (Erdős 1962)

mt,t = 21−(t
2) for any t ≥ 2. False for t ≥ 4 (Thomason 1989)

Determining even m4,4 is still an open and very hard problem... But what if we only
consider triangles and increase the number of colors?
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The Ramsey Multiplicity of Triangles

Theorem (Goodman 1959 – Asymptotic Version)

m3,3 = 1/4.

Besides random graphs, a matching upper bound is for example also given by complete
bipartite graphs, i.e., the blowup of R3-coloring (the ‘one-color’ Ramsey number).

Theorem (Cummings et al. 2013)

m3,3,3 = 1/25 and all extremal sequences are based on blowups of the R3,3-coloring.

Using either of the two R3,3,3-colorings, one has m3,3,3,3 ≤ 1/256.

Theorem (Kiem, Pokutta, S. 2023+)

m3,3,3,3 ≥ 1/256 − ε for some small ε.
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2. An intuitive Symbolic Approach 2 slides

Goodman’s original proof
We want to show that

+ ≥ 1
4 .

We use that

(I) 1 = + + + ,

(II) = + 2/3 + 1/3 , Equation (3) in Goodman’s paper

(III) [[ 2]] = + 1/3 Equation (4) in Goodman’s paper,

where 2 := + and [[·]] is the downward operator. (I) − 3(II) + 3(III) gives

+ = 1 − 3 + 3 [[ 2]] ≥ 1 − 3 + 3 2 = 3 ( − 1/2)2 + 1/4 ≥ 1/4,

where we used [[ 2]] ≥ [[ ]]2 = 2 (CS) for the first inequality.
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Rephrasing Goodman’s proof
Instead of applying CS, we could embrace the downward operator through

+ = 1 − 3 + 3 [[ 2]] = [[ 1 − 3 + 3 2]] = 3 [[ ( − 1/2)2]] + 1/4.

We can already appeal to the weaker [[F 2]] ≥ 0 instead of [[F 2]] ≥ [[F ]]2 (CS).

Using + = 1, we can further transform the statement to

+ = [[ 3/4 ( − )2]] + 1/4 =
[[((

−
√

3/2
√

3/2
0 0

)
·
( ))2 ]]

+ 1/4

=
〈( 3/4 −3/4

−3/4 3/4

)
,

[[(
2 ·

· 2

)]]〉
+ 1/4.

This looks suspiciously like a Semidefinite Programming (SDP) problem ...
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3. Formalisation through Flag Algebras 2 slides

Flag Algebras
Notation. A type τ is a fully labelled coloring and a flag F ∈ Fτ of type τ is a coloring
↓F with partial labels inducing τ . Write Fτ

n for flags of order n and note that Gn = F∅
n .

Definition (The Flag Algebra of type τ ; Razborov 2007)

The flag algebra Aτ is given by considering RFτ /K for

K = {F −
∑

F ′∈Fτ
n

p(F ; F ′)F ′ : F ∈ Fτ , n ≥ v(F )}

and defining the product

F1 · F2 =
∑

F ′∈Fτ
n

p(F1, F2; F ′) F ′ for any n ≥ v(F1) + v(F2) − v(τ).

The downward operator [[·]]τ is given by linearly extending [[F ]]τ = qτ (F ) ↓F ∈ A∅.
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The Semantic Cone of Flag Algebras
Any convergent sequence Gn ∈ G defines a limit functional p(F , Gn) → φ(F ) on A∅.

Theorem (Razborov 2007)

φ is a limit functional if and only if φ ∈ Hom+(A,R) = {φ ∈ Hom(A,R) : φ |G≡ 0}.

We can phrase our problem of minimizing F0 = + as the optimization problem

max
{

λ ∈ R : F0 − λ∅ ∈ S = {F ∈ A : φ(F ) ≥ 0 for all φ ∈ Hom+(A,R)}
}

.

Directly optimizing over the semantic cone is hard, but we can use SOS through

max
Q⪰0

min
G∈GN

d(F0; G) −
∑

τ

〈
Q,
([[

d(F1, F2; G)
]]

τ

)
F1,F2∈Fτ

f

〉
where 0 ≤ v(τ) ≤ N − 2 and f = ⌊(N − v(τ))/2⌋.
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4. Solving very large problems 3 slides

Leveraging Symmetries
Goodman’s result relies on computations on colorings of order N = 3:

max
Q⪰0

min
{

1 −
〈
Q,
( 1 0

0 0

)〉
, −
〈
Q,
( 1/3 1/3

1/3 0

)〉
, −
〈
Q,
( 0 1/3

1/3 1/3

)〉
, 1 −

〈
Q,
( 0 0

0 1

)〉}
= 1/4.

Increasing N usually both improves the bound and makes the SDP harder to solve.
N value time memory
6 0.02875 0.2s ±0.0 81.2MB ±24.7

7 0.02918 4.9s ±0.1 126.9MB ±26.3

8 0.02942 1.8h ±0.1 1.8GB ±0.0

Table: Complexity of SDP problem formulations for m4,4 using CSDP

How can we use combinatorial information to reduce these SDP formulations?
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Bounds through Semidefinite Programming

Method 1 Reduce the number of constraints and blocks by combining constraints.

max
Q⪰0

min
{

1 −
〈
Q,
( 1/2 0

0 1/2

)〉
, −
〈
Q,
( 1/6 1/3

1/3 1/6

)〉}
,

Strictly stronger than considering partitions (Balogh et al. 2017).

Method 2 Reduce the number of variables by block diagonalization.

max
x ,y≥0

min
{
1 − x

2 − y
2 , − x

2 + y
6
}

.

Generalizes the antiinvariant split of Razborov (2010). Similar to diagonalization in
SOS literature (Gatermann and Parrilo 2004). See also Bachoc et al. (2012).
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Leveraging Symmetries
We derived our result with N = 6 vertices, giving a 3GB+ SDP with 130k variables
and 120k constraints that takes a day to solve numerically.

Challenge: Turn the numerical solution into rigorous proof. Getting a small ε below
the bound is easy (round the LDL-decomposition) but hitting the exact value requires
formulating and solving an appropriate exact Linear Program (LP).

We also derived new (non-tight) lower bounds for m4,4 and m5,5 using 2-colorings on
N = 9 vertices, where numerically solving the SDP takes weeks.

Open Problem: m3,...,3 = (R3,...,3 − 1)−2 for all c?
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Thank you for your attention!
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