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J Computational tools have a long history ...

The Birch and Swinnerton-Dyer conjecture is based on numerical evidence
Appel and Harken announce a proof by exhaustion of the four color theorem
McCune prove that Robbins algebras are boolean using ATP

Hales proves the Kepler conjecture by systematically solving LPs

The Flyspeck project team announces a formalization of that proof

Heule, Kullmann, Marek solve the Bool. Pyth. triples problem using SAT solvers
Heule determined Schur number five in a two petabytes proof using SAT solvers
The Liquid Tensor Experiment verifies a recent result of Clausen and Scholze
Deepmind solves IMO problems at silver-medal level using deep learning

Google's AlphaEvolve designs algorithms for scientific discovery
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]. « What do Extremal Combinatorics care about? 2 slides



Zuse 1. What do Extremal Combinatorics care about?

What do extremal combinatorialists care about?

BERLIN

Extremal Graph Theory, on the most general level, investigates the extremal (maximal or
minimal) value of various graph parameters over the family of graphs having a particular
property. It is a lively subject with a rich history, where numerous natural questions have
beautiful answers. It is a field very much driven by problems; many of the interesting
ones are still wide open and stimulate an abundance of research.

Each such problem has two sides: one is the construction of an extremal structure,
the other is the proof of its optimality. In this course we are putting extra emphasis on
explicit constructions of extremal graphs, which do not customarily feature in standard
treatments of the field. These constructions often require useful tools from algebra,
geometry, or discrete Fourier analysis; the other main objective of these notes is to
highlight them.

p.7 of LET'S BE EXPLICIT! lecture notes by Tibor Szabd, July 2024



Zuse 1. What do Extremal Combinatorics care about?

Example: Graphs and graph sequences

Question. How many edges can a graph G of order n with w(G) < r have?

Theorem (Mantel, 1907; Turan, 1941; Erds—Stone, 1946)

At most (1 —1/r+o(1))(5), i.e., as many as the Turdn graph T (n,r).
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Question. How many edges can a graph G of order n with w(G) < r have?

Theorem (Mantel, 1907; Turan, 1941; Erds—Stone, 1946)

At most (1 —1/r+o(1))(5), i.e., as many as the Turdn graph T (n,r).

Question. How large can the order n a graph G with max(«a(G),w(G)) < k be?
Theorem (Ramsey, 1930; many others)

We know that R(3) = 6, R(4) = 18, 43 < R(5) < 46, and 2%/2 < R(k) < 3.78.
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Theorem (Mantel, 1907; Turan, 1941; Erds—Stone, 1946)

At most (1 —1/r+o(1))(5), i.e., as many as the Turdn graph T (n,r).

Question. How large can the order n a graph G with max(«a(G),w(G)) < k be?

Theorem (Ramsey, 1930; many others)
We know that R(3) = 6, R(4) = 18, 43 < R(5) < 46, and 2%/2 < R(k) < 3.78.

A variant. How few cliques and independent sets of size r can a graph contain?

Theorem (Goodman, 1959)
Asymptotically at least 25% of all triangles need to be cliques or independent sets.
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2. The Chromatic Number of the Plane 4 slides



Zuse 2. The Chromatic Number of the Plane

The Hadwiger-Nelson problem

Problem (Nelson 1950, but also Hadwiger, Erdés, Gardner, Moser, Harary, Tutte, ...)

What is the smallest number of colors suftficient for coloring the plane in such a way
that no two points of the same color are a unit distance apart?
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Problem (Nelson 1950, but also Hadwiger, Erdés, Gardner, Moser, Harary, Tutte, ...)

What is the smallest number of colors suftficient for coloring the plane in such a way
that no two points of the same color are a unit distance apart?

Considering the infinite graph with vertex set [E? and edges {x, y} for any x,y € E?
with ||x — y|| = 1, we are studying the chromatic number of the plane x(E?).
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Problem (Nelson 1950, but also Hadwiger, Erdés, Gardner, Moser, Harary, Tutte, ...)

What is the smallest number of colors suftficient for coloring the plane in such a way
that no two points of the same color are a unit distance apart?

Considering the infinite graph with vertex set [E? and edges {x, y} for any x,y € E?
with ||x — y|| = 1, we are studying the chromatic number of the plane x(E?).

Theorem (N.G. de Bruijn, P. Erdés 1951)
Assuming AoC any graph is k-colorable iff every finite subgraph of it is k-colorable.
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Problem (Nelson 1950, but also Hadwiger, Erdés, Gardner, Moser, Harary, Tutte, ...)

What is the smallest number of colors suftficient for coloring the plane in such a way
that no two points of the same color are a unit distance apart?

Considering the infinite graph with vertex set [E? and edges {x, y} for any x,y € E?
with ||x — y|| = 1, we are studying the chromatic number of the plane x(E?).

Theorem (N.G. de Bruijn, P. Erdés 1951)
Assuming AoC any graph is k-colorable iff every finite subgraph of it is k-colorable.

This problem has a long and complicated history which has been well documented by
Soifer over 14 pages in The New Mathematical Coloring Book (2024) ...
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IZ#SSTy 2. The Chromatic Number of the Plane
The history of the problem

Table 3.1 Who created the chromatic number of the plane problem?

Publication | Year |Author(s) Problem creator(s) or source named
[Gar2] 1960 |Gardner “Leo Moser ...writes...”
[Had4] 1961 |Hadwiger Nelson
(after Klee)
[E61.22] 1961 | Erdés “I cannot trace the origin of this problem”
[Cro] 1967 | Croft “A long'®-standing open problem of Erdés”
[Wool] 1973 | Woodall Gardner
[Sim] 1976 |Simmons Erdds, Harary, and Tutte
[E80.38] 1980- |Erdés Hadwiger and Nelson
[E81.23] 1981
[E81.26]
[CFG] 1991 | Croft, Falconer, and | “Apparently due to E. Nelson”
Guy
[KW] 1991 |Klee and Wagon “Posed in 1960-61 by M. Gardner and
Hadwiger”

p. 24 of The New Mathematical Coloring Book by Alexander Soifer, 2024
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f,}’sﬁy 2. The Chromatic Number of the Plane
The history of the problem

Hallard T. Croft Paul Erdés Hugo Hadwiger

Douglas R. Woodall

Diagram 3.1 Who created the chromatic number of the plane problem?

p. 24 of The New Mathematical Coloring Book by Alexander Soifer, 2024
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The history of the problem

The results of my historical research are summarized in Diagram 3.2, where arrows show
passing of the problem from one mathematician to another. In the end, Paul Erdds shares the
problem with the world in numerous talks and articles.

November 1950

Edward Nelson John Isbell )
Nl — -

1957 — Sept 1958

1958 ——
Leo Moser Paul Erdés ) ( Victor Klee )

1958

( m Hugo Hadwiger
~

Diagram 3.2 Passing the baton of the chromatic number of the plane problem

p. 32 of The New Mathematical Coloring Book by Alexander Soifer, 2024



2. The Chromatic Number of the Plane
Bounds on the problem

Lower bounds are given by finding unit distance graphs of large chromatic number.

ZUSE
INSTITUTE

BERLIN

Definition
A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — [E?
of its vertices in the plane s.t. ||[f(u) — f(v)|| =1 if and only {u, v} € E.
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Definition
A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — [E?
of its vertices in the plane s.t. ||[f(u) — f(v)|| =1 if and only {u, v} € E.

A triangle gives a lower bound of 3 and the Moser spindle a lower bound of 4 (1961).
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Definition
A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — [E?
of its vertices in the plane s.t. ||[f(u) — f(v)|| =1 if and only {u, v} € E.

A triangle gives a lower bound of 3 and the Moser spindle a lower bound of 4 (1961).

Theorem (Aubrey D.N.J. de Grey, 2018)
There is a unit distance graph on 20425 vertices with chromatic number 5.
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A Colorful Unsolved Problem -
Numberphile

681K views * 5 years ago
n Numberphile @

More links & stuff in full description below |||
Numberphile is supported by the Mathematical Science...

Numberphile

cc

3 YouTube



2. The Chromatic Number of the Plane
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GRAPH THEORY

Decades-0ld Graph Problem Yields to
Amateur Mathematician
By EVELYN LAMB APRIL 17, 2018 26

.number of vertices? The problem, now known as the Hadwiger-Nelson
problem or the problem of finding the chromatic number of the plane, has

piqued the interest of many mathematicians, including.

‘I Quantamacgazine



Zuse 2. The Chromatic Number of the Plane

Bounds on the problem

Aubrey de Grey and Alexander Soifer, Il Vicino, January 18, 2020 Ronald L. Graham presents Aubrey D.N.J. de Grey the Prize: $1000, San Diego, September
22,2018
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Lower bounds are given by finding unit distance graphs of large chromatic number.

Definition

A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — [E?
of its vertices in the plane s.t. ||[f(u) — f(v)|| =1 if and only {u, v} € E.

A triangle gives a lower bound of 3 and the Moser spindle a lower bound of 4 (1961).

Theorem (Aubrey D.N.J. de Grey, 2018)
There is a unit distance graph on 20425 vertices with chromatic number 5.

Upper bounds are given by explicit colorings g : E2 — [c] := {1,...,c}, usually
derived through tesselations using simple polytopal shapes, which give

5 < x(E?) < ...
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Lower bounds are given by finding unit distance graphs of large chromatic number.

Definition

A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — [E?
of its vertices in the plane s.t. ||[f(u) — f(v)|| =1 if and only {u, v} € E.

A triangle gives a lower bound of 3 and the Moser spindle a lower bound of 4 (1961).

Theorem (Aubrey D.N.J. de Grey, 2018)
There is a unit distance graph on 20425 vertices with chromatic number 5.

Upper bounds are given by explicit colorings g : E2 — [c] := {1,...,c}, usually
derived through tesselations using simple polytopal shapes, which give

5 < x(E?) <9.
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Lower bounds are given by finding unit distance graphs of large chromatic number.

Definition

A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — [E?
of its vertices in the plane s.t. ||[f(u) — f(v)|| =1 if and only {u, v} € E.

A triangle gives a lower bound of 3 and the Moser spindle a lower bound of 4 (1961).

Theorem (Aubrey D.N.J. de Grey, 2018)
There is a unit distance graph on 20425 vertices with chromatic number 5.

Upper bounds are given by explicit colorings g : E2 — [c] := {1,...,c}, usually
derived through tesselations using simple polytopal shapes, which give

5 < x(E?) < 8.
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Lower bounds are given by finding unit distance graphs of large chromatic number.

Definition

A graph G = (V, E) is a unit distance graph if there exists an embedding f : V — [E?
of its vertices in the plane s.t. ||[f(u) — f(v)|| =1 if and only {u, v} € E.

A triangle gives a lower bound of 3 and the Moser spindle a lower bound of 4 (1961).

Theorem (Aubrey D.N.J. de Grey, 2018)
There is a unit distance graph on 20425 vertices with chromatic number 5.

Upper bounds are given by explicit colorings g : E2 — [c] := {1,...,c}, usually
derived through tesselations using simple polytopal shapes, which give

5 < x(E?) <7.
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3. Constructions through Implicit Representation 3 slides



,Z,:’sﬁy 3. Constructions through Implicit Representation
Constructions through Implicit Representation

Question. Can we use computers to find colorings g : E2 — [c] so that

{x € B2 | g(x) = gly) for any y € Bi(x)} = 07
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Constructions through Implicit Representation

Question. Can we use computers to find colorings g : E2 — [c] so that

{x € B2 | g(x) = gly) for any y € Bi(x)} = 07

Idea. Consider a probabilistic relaxation to functions p : E> — A, minimizing the loss

te(p) = [ [ pTR) dy ax. (1)
[~R,R]2 9By (x)
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f,}’sﬁy 3. Constructions through Implicit Representation
Constructions through Implicit Representation

Question. Can we use computers to find colorings g : E?2 — [c] so that
gs 8

{x € B?| g(x) = g(y) for any y € Bi(x)} = 07

Idea. Consider a probabilistic relaxation to functions p : E> — A, minimizing the loss

te(p) = [ [ pTR) dy ax. (1)
[~R,R]2 9By (x)

Challenge. Can we find a parameterized and (easily) differentiable family py, i.e., an
implicit representation, and optimize Equation (1) over # through gradient descent?



e 3. Constructions through Implicit Representation

How to parameterize py?
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A few candidates: Taylor or Fourier Series, Splines, Wavelets, SVM, RBF, ... but we
chose simple feed-forward Neural Networks with sinus activations:

Input Hidden Layer Output
Layer Layer

Figure: Feedforward neural network or multilayer perceptron architecture.



e 3. Constructions through Implicit Representation

How to parameterize py?

BERLIN

A few candidates: Taylor or Fourier Series, Splines, Wavelets, SVM, RBF,
chose simple feed-forward Neural Networks with sinus activations:

fc 3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution I\ K—M
(5 5) kernel Max-Pooling (5x5) kernel - May-pooling (with
valid padding 2x2) valid padding (2x2)

/"D dropout)

INPUT nl channels nl channels n2 channels \ ¢
(28x28x1) (24x24xn1) (12x12xn1) (8x8xn2) (4x4xn2) | I

n3 units

n2 channels ||

Figure: Convolutional neural network architecture.

... but we
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A few candidates: Taylor or Fourier Series, Splines, Wavelets, SVM, RBF, ... but we
chose simple feed-forward Neural Networks with sinus activations:

z
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Figure: Transformer neural network architecture.



ELSEI— 3. Constructions through Implicit Representation

How to parameterize py?
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A few candidates: Taylor or Fourier Series, Splines, Wavelets, SVM, RBF, ... but we
chose simple feed-forward Neural Networks with sinus activations:

Blackbox

input N heavily parameterized > output
easily differentiable

universal approximator

Theorem (Universal Approximation Theorem)

Feedforward neural networks with certain activation functions are dense (w.r.t.
compact convergence) in the space of continuous functions.
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How do we find the correct parameters?

Algorithm. We used batched gradient descent to ‘train’ pg to minimize Lg(0).
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f,}’sﬁy 3. Constructions through Implicit Representation
How do we find the correct parameters?

Algorithm. We used batched gradient descent to ‘train’ py to minimize Lg(#). At each
step we sample points x() € [-R, R]? and y() € 9B;(x()) and use the fact that

VolLr(0) = VoL(0) == Vo pa(x\) - py(y?)/m,
i—1
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f,}’sﬁy 3. Constructions through Implicit Representation
How do we find the correct parameters?

Algorithm. We used batched gradient descent to ‘train’ py to minimize Lg(#). At each
step we sample points x() € [-R, R]? and y() € 9B;(x()) and use the fact that

VolLr(0) = VoL(0) == Vo pa(x\) - py(y?)/m,
i—1

to adjust the parameters 0 with an appropriate step size ay through

0k+1 = (9;( — Q) @9[_(9)




f,}’sﬁy 3. Constructions through Implicit Representation
How do we find the correct parameters?

Algorithm. We used batched gradient descent to ‘train’ py to minimize Lg(#). At each
step we sample points x() € [-R, R]? and y() € 9B;(x()) and use the fact that

Volr(0) ~ VgL (0) := Y Vg po(x) - pa(y D)/ m,
i=1

to adjust the parameters 0 with an appropriate step size ay through

0k+1 = (9;( — Q) ﬁgL(Q)

Hyperparameters and implementation details.
= MLP with sinus activation functions and two hidden linear layers a 256 neurons.
= We sampled around 2'2 pairs for each step for a total of around 22° samples.

= Trained in PyTorch using AdamW and « linearly decaying from ~ 1073.
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Unfortunately this coloring was already known...
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FIG. 3. A good T-coloring of (R2, 1).

Theorem (Pritikin 1995; refined by Parts 2020)

99.985% of the plane can be colored with 6 colors while avoiding unit distances.
This implies that any unit distance graph with chromatic number 7 must have order > 6 993.
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IZ#SSTy 3. Constructions through Implicit Representation
Unfortunately this coloring was already known...

FIG. 3. A good T-coloring of (R2, 1).

Theorem (Pritikin 1995; refined by Parts 2020)

99.985% of the plane can be colored with 6 colors while avoiding unit distances.

This implies that any unit distance graph with chromatic number 7 must have order > 6 993.

But the principle works! Can we study some variants of the original problem?
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4. Variants of Hadwiger-Nelson 4 slides



fu”ssf.wj 4. Variants of Hadwiger-Nelson
Variant 1: Almost succeeding...

Question. What is the smallest percentage of the plane that needs to be removed so
that we can color the rest with 1,2,...,6 colors without monochromatic conflicts?

colors 1 2 3 4 5 6
best known 77.06% 54.13% 31.20% 8.25% 4.01% 0.02%
numerics 75.86% 54.14% 31.23% 8.27% 3.56% 0.02%

All previously best known values are due to Paarts (2020) building on
work of Pritikin (1998) for 6 colors and Croft (1967) for 1, 2, 3, and 4 colors.

Theorem (Mundinger, Pokutta, S., Zimmer 2025+)















IZ#SSTy 4. Variants of Hadwiger-Nelson
Variant 1: Almost succeeding...

Question. What is the smallest percentage of the plane that needs to be removed so
that we can color the rest with 1,2,...,6 colors without monochromatic conflicts?

colors 1 2 3 4 5 6
best known 77.06% 54.13% 31.20% 8.25% 4.01% 0.02%
numerics 75.86% 54.14% 31.23% 8.27% 3.56% 0.02%

All previously best known values are due to Paarts (2020) building on
work of Pritikin (1998) for 6 colors and Croft (1967) for 1, 2, 3, and 4 colors.

Theorem (Mundinger, Pokutta, S., Zimmer 2025+ )

96.29% of the plane can be 5-colored with no monochromatic unit distance pairs.

Remark. We can also color ~ 95% of E2 using 14 colors (not yet formalized).



.’#sﬁy 4. Variants of Hadwiger-Nelson
Variant 2: Going off-diagonal...

A c-coloring realizes (d, ..., dc) if color i does not contain distance d.

Problem (The continuum of six-colorings; Soifer in Nash and Rassias’ Open Problems in Mathematics)

Determine the set of d for which (1,1,1,1,1,d) can be realized.

Soifer (1991) found a coloring for d = 1/4/5. Hoffman and Soifer (1993) also found
one for d = /2 — 1. Both of these are part of a family that covers any

0.414 ~ V2 —1<d <1/V5~ 0.447.






.’#sﬁy 4. Variants of Hadwiger-Nelson
Variant 2: Going off-diagonal...

A c-coloring realizes (d, ..., dc) if color i does not contain distance d.

Problem (The continuum of six-colorings; Soifer in Nash and Rassias’ Open Problems in Mathematics)

Determine the set of d for which (1,1,1,1,1,d) can be realized.

Soifer (1991) found a coloring for d = 1/4/5. Hoffman and Soifer (1993) also found
one for d = /2 — 1. Both of these are part of a family that covers any

0.414 ~ V2 —1<d <1/V5~ 0.447.

Theorem (Mundinger, Pokutta, S., Zimmer 2024)
We extended the range of realizable types to 0.354 < d < 0.553.
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Variant 2: Going off-diagonal ...

Minimum fraction of conflicts over various runs

f
et

/s

0.05 :

0.04 i
iodR! f/
b /

0.03 n i i
O

0024 e —

Fraction of conflicts

0.01 4

0.00 T T T T T T T T T
025 050 0.75 100 125 150 175 200 225

Last colour distance

Figure: Numerical results showing the percentage of points with some conflict for a given
forbidden distance in the sixth color minimized over several runs.
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Variant 3: Three points are more than two...

Question. With how many colors can we color the plane while avoiding three points of
the same color forming a triangles with edge lengths 0 < a < b <17

Aichholzer and ical evid . it
Perz (2019) numerical eviaence ‘ormalization

O 3colors @O 4colors M@ 5colors W 6 colors
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Graph sequences as continuous objects

5. Possible Applications to Graph Theory
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Aren’t graphs ... discrete?
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f,}’sﬁy 5. Possible Applications to Graph Theory
Graph sequences as continuous objects
Aren’t graphs ... discrete? Yes, but ...

1) We can formulate a probabilistic relaxation through a random graph model.
2) Graphons (Lovasz and Szegedy, 2004) tell us that symmetric and measurable
W :[0,1]? — [0,1] correspond bijectively to convergent graph sequences.

You can think of graphons as adjacency matrices viewed as black-and-white images.

ST
(R

[T
(S
[
FRRERRRR
FPRRERERRR R R
FRRERRRRRRR
FRRERRRRRR R

FREER R R e
FRRERRPRRR R
FREER PR R R
R T e
[y
[
R

e
e
e

Figure: (left) T(13,4) (center) adjacency matrix  (right) graphon of (T(n.,4))nEN
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Is the same approach applicable?

Figure: Result of maximizing the number
of edges while penalizing cliques of size 5
with a Lagrangian term.
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f,}’sﬁy 5. Possible Applications to Graph Theory
Is the same approach applicable?

Figure: Result of maximizing the number Figure: Result of minimizing the number
of edges while penalizing cliques of size 5 of monochromatic triangles in 3-colorings
with a Lagrangian term. of the edges of a complete graph.
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f,}’sﬁy 5. Possible Applications to Graph Theory
Is the same approach applicable?

Figure: Result of maximizing the number Figure: Result of minimizing the number
of edges while penalizing cliques of size 5 of monochromatic triangles in 3-colorings
with a Lagrangian term. of the edges of a complete graph.
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Thank you for your attention!

A description of the methodology was accepted at ICML 2025
and is available at arxiv.org/abs/2501.18527.
A description of the two colorings was published by Geombinatorics Quarterly
and is available at arxiv.org/abs/2404.05509.
Descriptions of the results for almost-colorings and
triangle-free colorings are in preparation.


arxiv.org/abs/2501.18527
arxiv.org/abs/2404.05509
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