Going beyond 2.4 in Freiman's 2.4 k -Theorem

Pablo Candela Oriol Serra Christoph Spiegel

CANT 2018

New York, May 2018

UNIVERSITAT POLITĖCNICA
de catalunya
BARCELONATECH

The sumset

Definition
Given a set $A \subset G$ in some additive group G, we define its sumset as

$$
\begin{equation*}
A+A=2 A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\} \subset G . \tag{1}
\end{equation*}
$$

The sumset

Definition
Given a set $A \subset G$ in some additive group G, we define its sumset as

$$
\begin{equation*}
A+A=2 A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\} \subset G . \tag{1}
\end{equation*}
$$

This should not be confused with the dilate $2 \cdot A=\{2 a: a \in A\}$.

The sumset

Definition
Given a set $A \subset G$ in some additive group G, we define its sumset as

$$
\begin{equation*}
A+A=2 A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\} \subset G . \tag{1}
\end{equation*}
$$

This should not be confused with the dilate $2 \cdot A=\{2 a: a \in A\}$.
Example
Consider the following two sets of size k :

The sumset

Definition

Given a set $A \subset G$ in some additive group G, we define its sumset as

$$
\begin{equation*}
A+A=2 A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\} \subset G . \tag{1}
\end{equation*}
$$

This should not be confused with the dilate $2 \cdot A=\{2 a: a \in A\}$.
Example
Consider the following two sets of size k :

1. For $A=\{0, \ldots, k-1\} \subset \mathbb{Z}$ we have $|2 A|=2 k-1$.

The sumset

Definition

Given a set $A \subset G$ in some additive group G, we define its sumset as

$$
\begin{equation*}
A+A=2 A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\} \subset G . \tag{1}
\end{equation*}
$$

This should not be confused with the dilate $2 \cdot A=\{2 a: a \in A\}$.
Example
Consider the following two sets of size k :

1. For $A=\{0, \ldots, k-1\} \subset \mathbb{Z}$ we have $|2 A|=2 k-1$.
2. For $A=\left\{0,1,2,4, \ldots, 2^{k-2}\right\} \subset \mathbb{Z}$ we have $|2 A|=\binom{k}{2}+2$.

The sumset

Definition

Given a set $A \subset G$ in some additive group G, we define its sumset as

$$
\begin{equation*}
A+A=2 A=\left\{a+a^{\prime}: a, a^{\prime} \in A\right\} \subset G . \tag{1}
\end{equation*}
$$

This should not be confused with the dilate $2 \cdot A=\{2 a: a \in A\}$.
Example
Consider the following two sets of size k :

1. For $A=\{0, \ldots, k-1\} \subset \mathbb{Z}$ we have $|2 A|=2 k-1$.
2. For $A=\left\{0,1,2,4, \ldots, 2^{k-2}\right\} \subset \mathbb{Z}$ we have $|2 A|=\binom{k}{2}+2$.

Inverse Problems: We are interested in understanding the structure of A when the doubling $|2 A| /|A|$ is small.

Some classic results

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2 A| \geq 2|A|-1$.

Some classic results

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2 A| \geq 2|A|-1$. Equality holds if and only if A is an arithmetic progression.

Some classic results

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2 A| \geq 2|A|-1$. Equality holds if and only if A is an arithmetic progression.

Theorem (Davenport '35; Cauchy 1813)
Any set $\mathcal{A} \subseteq \mathbb{Z}_{p}$ satisfies $|2 \mathcal{A}| \geq \min (2|\mathcal{A}|-1, p)$.

Some classic results

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2 A| \geq 2|A|-1$. Equality holds if and only if A is an arithmetic progression.

Theorem (Davenport '35; Cauchy 1813)
Any set $\mathcal{A} \subseteq \mathbb{Z}_{p}$ satisfies $|2 \mathcal{A}| \geq \min (2|\mathcal{A}|-1, p)$.
Theorem (Vosper '56)
Any set $\mathcal{A} \subseteq \mathbb{Z}_{p}$ satisfying $|\mathcal{A}| \geq 2$ and $|2 \mathcal{A}|=2|\mathcal{A}|-1 \leq p-2$
must be an arithmetic progression.

Some classic results

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2 A| \geq 2|A|-1$. Equality holds if and only if A is an arithmetic progression.

Theorem (Davenport '35; Cauchy 1813)
Any set $\mathcal{A} \subseteq \mathbb{Z}_{p}$ satisfies $|2 \mathcal{A}| \geq \min (2|\mathcal{A}|-1, p)$.
Theorem (Vosper '56)

$$
\text { Any set } \mathcal{A} \subseteq \mathbb{Z}_{p} \text { satisfying }|\mathcal{A}| \geq 2 \text { and }|2 \mathcal{A}|=2|\mathcal{A}|-1 \leq p-2
$$

must be an arithmetic progression.
Theorem (Kneser '53)
Any set $\mathcal{A} \subseteq \mathbb{Z}_{n}$ satisfies $|2 \mathcal{A}| \geq 2|\mathcal{A}+H|-|H|$ where
$H=\left\{x \in \mathbb{Z}_{n}: x+2 \mathcal{A} \subset 2 \mathcal{A}\right\}$ is the stabilizer of the sumset.

Some classic results

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2 A| \geq 2|A|-1$. Equality holds if and only if A is an arithmetic progression.

Theorem (Davenport '35; Cauchy 1813)
Any set $\mathcal{A} \subseteq \mathbb{Z}_{p}$ satisfies $|2 \mathcal{A}| \geq \min (2|\mathcal{A}|-1, p)$.

Theorem (Vosper '56)

$$
\text { Any set } \mathcal{A} \subseteq \mathbb{Z}_{p} \text { satisfying }|\mathcal{A}| \geq 2 \text { and }|2 \mathcal{A}|=2|\mathcal{A}|-1 \leq p-2
$$

must be an arithmetic progression.
Theorem (Kneser '53)
Any set $\mathcal{A} \subseteq \mathbb{Z}_{n}$ satisfies $|2 \mathcal{A}| \geq 2|\mathcal{A}+H|-|H|$ where
$H=\left\{x \in \mathbb{Z}_{n}: x+2 \mathcal{A} \subset 2 \mathcal{A}\right\}$ is the stabilizer of the sumset.
The corresponding inverse statement is due to Kemperman ' 60.

Freiman's $3 k-4$ Theorem in \mathbb{Z}

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3|A|-4$ is contained in an arithmetic progression of size at most $|2 A|-|A|+1$.

Freiman's $3 k-4$ Theorem in \mathbb{Z}

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3|A|-4$ is contained in an arithmetic progression of size at most $|2 A|-|A|+1$.

Proof due to Lev and Smeliansky '95.

Freiman's $3 k-4$ Theorem in \mathbb{Z}

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3|A|-4$ is contained in an arithmetic progression of size at most $|2 A|-|A|+1$.

Proof due to Lev and Smeliansky '95.

1. Normalize A, that is consider $(A-\min (A)) / \operatorname{gcd}(A-\min (A))$.

Freiman's $3 k-4$ Theorem in \mathbb{Z}

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3|A|-4$ is contained in an arithmetic progression of size at most $|2 A|-|A|+1$.

Proof due to Lev and Smeliansky '95.

1. Normalize A, that is consider $(A-\min (A)) / \operatorname{gcd}(A-\min (A))$.
2. To simplify the proof, assume that $a=\max (A)$ is prime.

Freiman's $3 k-4$ Theorem in \mathbb{Z}

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3|A|-4$ is contained in an arithmetic progression of size at most $|2 A|-|A|+1$.

Proof due to Lev and Smeliansky '95.

1. Normalize A, that is consider $(A-\min (A)) / \operatorname{gcd}(A-\min (A))$.
2. To simplify the proof, assume that $a=\max (A)$ is prime.
3. Let \mathcal{A} denote the canonical projection of A into \mathbb{Z}_{a}.

Freiman's $3 k-4$ Theorem in \mathbb{Z}

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3|A|-4$ is contained in an arithmetic progression of size at most $|2 A|-|A|+1$.

Proof due to Lev and Smeliansky '95.

1. Normalize A, that is consider $(A-\min (A)) / \operatorname{gcd}(A-\min (A))$.
2. To simplify the proof, assume that $a=\max (A)$ is prime.
3. Let \mathcal{A} denote the canonical projection of A into \mathbb{Z}_{a}.
4. $|2 A|=|2 \mathcal{A}|+\#\{x \in[0, a): x, a+x \in 2 A\}+1 \geq|2 \mathcal{A}|+|A|$.

Freiman's $3 k-4$ Theorem in \mathbb{Z}

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3|A|-4$ is contained in an arithmetic progression of size at most $|2 A|-|A|+1$.

Proof due to Lev and Smeliansky '95.

1. Normalize A, that is consider $(A-\min (A)) / \operatorname{gcd}(A-\min (A))$.
2. To simplify the proof, assume that $a=\max (A)$ is prime.
3. Let \mathcal{A} denote the canonical projection of A into \mathbb{Z}_{a}.
4. $|2 A|=|2 \mathcal{A}|+\#\{x \in[0, a): x, a+x \in 2 A\}+1 \geq|2 \mathcal{A}|+|A|$.
5. If $|2 \mathcal{A}|=\max (A)$ we are done. If not, then Cauchy-Davenport gives us the contradiction $|2 A| \geq 2|\mathcal{A}|-1+|A|=3|A|-3$.

Freiman's $3 k-4$ Theorem in \mathbb{Z}

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3|A|-4$ is contained in an arithmetic progression of size at most $|2 A|-|A|+1$.

Proof due to Lev and Smeliansky '95.

1. Normalize A, that is consider $(A-\min (A)) / \operatorname{gcd}(A-\min (A))$.
2. To simplify the proof, assume that $a=\max (A)$ is prime.
3. Let \mathcal{A} denote the canonical projection of A into \mathbb{Z}_{a}.
4. $|2 A|=|2 \mathcal{A}|+\#\{x \in[0, a): x, a+x \in 2 A\}+1 \geq|2 \mathcal{A}|+|A|$.
5. If $|2 \mathcal{A}|=\max (A)$ we are done. If not, then Cauchy-Davenport gives us the contradiction $|2 A| \geq 2|\mathcal{A}|-1+|A|=3|A|-3$.

Example
For $k \geq 3$ and $x>2(k-2)$ the sets $A_{x}=\{0, \ldots, k-2\} \cup\{x\}$ all satisfy $\left|2 A_{x}\right|=3\left|A_{x}\right|-3$ but require arbitrarily large APs to be covered.

Obtaining an analogue in \mathbb{Z}_{p}

A similar result is conjectured to hold in \mathbb{Z}_{p}.

Obtaining an analogue in \mathbb{Z}_{p}

A similar result is conjectured to hold in \mathbb{Z}_{p}.

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 3|\mathcal{A}|-4$ as well as \quad is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Obtaining an analogue in \mathbb{Z}_{p}

A similar result is conjectured to hold in \mathbb{Z}_{p}.

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 3|\mathcal{A}|-4$ as well as \quad is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Corollary to Green, Ruzsa '06 $|\mathcal{A}| \leq p / 10^{250}$

Obtaining an analogue in \mathbb{Z}_{p}

A similar result is conjectured to hold in \mathbb{Z}_{p}.

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 3|\mathcal{A}|-4$ as well as \quad is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Corollary to Green, Ruzsa '06 $|\mathcal{A}| \leq p / 10^{250}$
Serra, Zémor '08 $|2 \mathcal{A}| \leq(2+\epsilon)|\mathcal{A}|-4$ and $|2 \mathcal{A}| \leq p-(|2 \mathcal{A}|-2|\mathcal{A}|+1)$

Obtaining an analogue in \mathbb{Z}_{p}

A similar result is conjectured to hold in \mathbb{Z}_{p}.

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 3|\mathcal{A}|-4$ as well as \quad is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Corollary to Green, Ruzsa '06 $|\mathcal{A}| \leq p / 10^{250}$
Serra, Zémor '08 $|2 \mathcal{A}| \leq(2+\epsilon)|\mathcal{A}|-4$ and $|2 \mathcal{A}| \leq p-(|2 \mathcal{A}|-2|\mathcal{A}|+1)$
Freiman '66 $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 35$

Obtaining an analogue in \mathbb{Z}_{p}

A similar result is conjectured to hold in \mathbb{Z}_{p}.

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 3|\mathcal{A}|-4$ as well as is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Corollary to Green, Ruzsa '06 $|\mathcal{A}| \leq p / 10^{250}$
Serra, Zémor '08 $|2 \mathcal{A}| \leq(2+\epsilon)|\mathcal{A}|-4$ and $|2 \mathcal{A}| \leq p-(|2 \mathcal{A}|-2|\mathcal{A}|+1)$
Freiman '66 $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 35$
Rodseth '06 $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 10.7$

Obtaining an analogue in \mathbb{Z}_{p}

A similar result is conjectured to hold in \mathbb{Z}_{p}.

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 3|\mathcal{A}|-4$ as well as is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Corollary to Green, Ruzsa '06 $|\mathcal{A}| \leq p / 10^{250}$
Serra, Zémor '08 $|2 \mathcal{A}| \leq(2+\epsilon)|\mathcal{A}|-4$ and $|2 \mathcal{A}| \leq p-(|2 \mathcal{A}|-2|\mathcal{A}|+1)$
Freiman '66 $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 35$
Rødseth '06 $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 10.7$
Candela, Serra, S. ' ${ }^{18+}|2 \mathcal{A}| \leq 2.48|\mathcal{A}|-7$ and $|\mathcal{A}| \leq p / 10^{10}$

Obtaining an analogue in \mathbb{Z}_{p}

A similar result is conjectured to hold in \mathbb{Z}_{p}.

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 3|\mathcal{A}|-4$ as well as \quad is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Corollary to Green, Ruzsa '06 $|\mathcal{A}| \leq p / 10^{250}$
Serra, Zémor '08 $|2 \mathcal{A}| \leq(2+\epsilon)|\mathcal{A}|-4$ and $|2 \mathcal{A}| \leq p-(|2 \mathcal{A}|-2|\mathcal{A}|+1)$
Freiman '66 $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 35$
Rodseth '06 $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 10.7$
Candela, Serra, S. ${ }^{\prime} 18+|2 \mathcal{A}| \leq 2.48|\mathcal{A}|-7$ and $|\mathcal{A}| \leq p / 10^{10}$
All but the second result use rectification, that is they Freiman-isomorphically map (part of) the set into the integers.

Proof outline of Freiman's $2.4 k$-Theorem

Theorem (Freiman '66)
Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 35$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

Proof outline of Freiman's $2.4 k$-Theorem

Theorem (Freiman '66)
Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 35$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

1. Show that a small sumset implies a large Fourier coefficient of the indicator function $\mathbb{1}_{\mathcal{A}}$.

Proof outline of Freiman's $2.4 k$-Theorem

Theorem (Freiman '66)
Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 35$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

1. Show that a small sumset implies a large Fourier coefficient of the indicator function $\mathbb{1}_{\mathcal{A}}$.
2. As a consequence of this large Fourier coefficient, one can rectify a large part \mathcal{A}^{\prime} of the set \mathcal{A}. Call the result of that rectification A^{\prime}.

Proof outline of Freiman's $2.4 k$-Theorem

Theorem (Freiman '66)
Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 35$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

1. Show that a small sumset implies a large Fourier coefficient of the indicator function $\mathbb{1}_{\mathcal{A}}$.
2. As a consequence of this large Fourier coefficient, one can rectify a large part \mathcal{A}^{\prime} of the set \mathcal{A}. Call the result of that rectification A^{\prime}.
3. Apply the $3 k-4$-Theorem to that part A^{\prime}, obtaining an efficient covering of both A^{\prime} and \mathcal{A}^{\prime} through an AP with some step size d.

Proof outline of Freiman's $2.4 k$-Theorem

Theorem (Freiman '66)
Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 35$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

1. Show that a small sumset implies a large Fourier coefficient of the indicator function $\mathbb{1}_{\mathcal{A}}$.
2. As a consequence of this large Fourier coefficient, one can rectify a large part \mathcal{A}^{\prime} of the set \mathcal{A}. Call the result of that rectification A^{\prime}.
3. Apply the $3 k-4$-Theorem to that part A^{\prime}, obtaining an efficient covering of both A^{\prime} and \mathcal{A}^{\prime} through an AP with some step size d.
4. Shrink \mathcal{A}^{\prime} into a small segment in \mathbb{Z}_{p} by dilating \mathcal{A} by d^{-1}.

Proof outline of Freiman's $2.4 k$-Theorem

Theorem (Freiman '66)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 35$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

1. Show that a small sumset implies a large Fourier coefficient of the indicator function $\mathbb{1}_{\mathcal{A}}$.
2. As a consequence of this large Fourier coefficient, one can rectify a large part \mathcal{A}^{\prime} of the set \mathcal{A}. Call the result of that rectification A^{\prime}.
3. Apply the $3 k-4$-Theorem to that part A^{\prime}, obtaining an efficient covering of both A^{\prime} and \mathcal{A}^{\prime} through an AP with some step size d.
4. Shrink \mathcal{A}^{\prime} into a small segment in \mathbb{Z}_{p} by dilating \mathcal{A} by d^{-1}.
5. Using the cardinality of $2 \mathcal{A}$, argue that some $p / 2$-segment of \mathbb{Z}_{p} is free of elements of \mathcal{A}. Hence all of \mathcal{A} can be rectified.

Proof outline of Freiman's $2.4 k$-Theorem

Theorem (Freiman '66)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.4|\mathcal{A}|-3$ and $|\mathcal{A}| \leq p / 35$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

1. Show that a small sumset implies a large Fourier coefficient of the indicator function $\mathbb{1}_{\mathcal{A}}$.
2. As a consequence of this large Fourier coefficient, one can rectify a large part \mathcal{A}^{\prime} of the set \mathcal{A}. Call the result of that rectification A^{\prime}.
3. Apply the $3 k-4$-Theorem to that part A^{\prime}, obtaining an efficient covering of both A^{\prime} and \mathcal{A}^{\prime} through an AP with some step size d.
4. Shrink \mathcal{A}^{\prime} into a small segment in \mathbb{Z}_{p} by dilating \mathcal{A} by d^{-1}.
5. Using the cardinality of $2 \mathcal{A}$, argue that some $p / 2$-segment of \mathbb{Z}_{p} is free of elements of \mathcal{A}. Hence all of \mathcal{A} can be rectified.
6. Apply the $3 k-4$-Theorem to all of \mathcal{A}, obtaining the covering.

Proof outline of our result

Theorem (Candela, Serra, S. '18+)
Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.48|\mathcal{A}|-7$ and $|\mathcal{A}| \leq p / 10^{10}$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof outline of our result

Theorem (Candela, Serra, S. '18+)
Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.48|\mathcal{A}|-7$ and $|\mathcal{A}| \leq p / 10^{10}$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

$$
\mathbb{Z}_{n}
$$

modular reduction
\mathbb{Z}
\mathbb{Z}_{p}

Proof outline of our result

Theorem (Candela, Serra, S. '18+)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.48|\mathcal{A}|-7$ and $|\mathcal{A}| \leq p / 10^{10}$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

$$
\mathbb{Z}_{n} \underset{\substack{\text { modular } \\ \text { reduction }}}{\substack{\mathbb{Z}}} \quad \text { rectification } \quad \mathbb{Z}_{p}
$$

Kneser '53

3k-4 Theorem
Freiman'66
Lev, Smeliansky '95
2.4k-3 Theorem

Freiman '66

Proof outline of our result

Theorem (Candela, Serra, S. '18+)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.48|\mathcal{A}|-7$ and $|\mathcal{A}| \leq p / 10^{10}$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

$\left.\begin{array}{cccc}\mathbb{Z}_{n} & \begin{array}{c}\text { modular } \\ \text { reduction }\end{array} & \mathbb{Z} & \text { rectification } \\ \mathbb{Z}_{p} \\ \text { '2k-1 Theorem' } \\ \text { Kneser'53 }\end{array} \rightarrow \quad \rightarrow \quad \begin{array}{c}\text { 3k-4 Theorem } \\ \text { Freiman'66 } \\ \text { Lev, Smeliansky'95 }\end{array}\right)$

Proof outline of our result

Theorem (Candela, Serra, S. '18+)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.48|\mathcal{A}|-7$ and $|\mathcal{A}| \leq p / 10^{10}$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

\mathbb{Z}_{n}	modular reduction	\mathbb{Z}	rectification	\mathbb{Z}_{p}
'2k-1 Theorem' Kneser'53	\rightarrow	3k-4 Theorem Freiman'66 Lev, Smeliansky'95	\rightarrow	2.4k-3 Theorem Freiman'66
2.04k Theorem Freiman, Deshoullier '03	\rightarrow	'weak' 3.04k Theorem		

Proof outline of our result

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3.04|A|-3$ can be covered by an arithmetic progression of length at most $10^{9}|A|$.

Proof outline of our result

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3.04|A|-3$ can be covered by an arithmetic progression of length at most $10^{9}|A|$.

Theorem (Freiman, Deshouiller '03)
With some exceptions, for any set $\mathcal{A} \subset \mathbb{Z}_{n}$ satisfying $|\mathcal{A}| \leq 10^{-9} n$ and
$|2 \mathcal{A}| \leq 2.04|\mathcal{A}|$ there exists a subgroup $H<\mathbb{Z}$ so that \mathcal{A} is contained in an ℓ-term arithmetic progression of cosets of H where $(\ell-1)|H| \leq|2 \mathcal{A}|-|\mathcal{A}|$.

Proof outline of our result

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3.04|A|-3$ can be covered by an arithmetic progression of length at most $10^{9}|A|$.
Theorem (Freiman, Deshouiller '03)
With some exceptions, for any set $\mathcal{A} \subset \mathbb{Z}_{n}$ satisfying $|\mathcal{A}| \leq 10^{-9} n$ and
$|2 \mathcal{A}| \leq 2.04|\mathcal{A}|$ there exists a subgroup $H<\mathbb{Z}$ so that \mathcal{A} is contained in an ℓ-term arithmetic progression of cosets of H where $(\ell-1)|H| \leq|2 \mathcal{A}|-|\mathcal{A}|$.

1. Normalize A and let \mathcal{A} denote the projection of A into $\mathbb{Z}_{\max (A)}$.

Proof outline of our result

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3.04|A|-3$ can be covered by an arithmetic progression of length at most $10^{9}|A|$.
Theorem (Freiman, Deshouiller '03)
With some exceptions, for any set $\mathcal{A} \subset \mathbb{Z}_{n}$ satisfying $|\mathcal{A}| \leq 10^{-9} n$ and
$|2 \mathcal{A}| \leq 2.04|\mathcal{A}|$ there exists a subgroup $H<\mathbb{Z}$ so that \mathcal{A} is contained in an ℓ-term arithmetic progression of cosets of H where $(\ell-1)|H| \leq|2 \mathcal{A}|-|\mathcal{A}|$.

1. Normalize A and let \mathcal{A} denote the projection of A into $\mathbb{Z}_{\max (A)}$.
2. Again $|2 A| \geq|2 \mathcal{A}|+|A|$ and therefore $|2 \mathcal{A}| \leq 2.04|\mathcal{A}|$.

Proof outline of our result

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3.04|A|-3$ can be covered by an arithmetic progression of length at most $10^{9}|A|$.
Theorem (Freiman, Deshouiller '03)
With some exceptions, for any set $\mathcal{A} \subset \mathbb{Z}_{n}$ satisfying $|\mathcal{A}| \leq 10^{-9} n$ and
$|2 \mathcal{A}| \leq 2.04|\mathcal{A}|$ there exists a subgroup $H<\mathbb{Z}$ so that \mathcal{A} is contained in an ℓ-term arithmetic progression of cosets of H where $(\ell-1)|H| \leq|2 \mathcal{A}|-|\mathcal{A}|$.

1. Normalize A and let \mathcal{A} denote the projection of A into $\mathbb{Z}_{\max (A)}$.
2. Again $|2 A| \geq|2 \mathcal{A}|+|A|$ and therefore $|2 \mathcal{A}| \leq 2.04|\mathcal{A}|$.
3. If $|\mathcal{A}|>10^{-9} \max (A)$ we are done.

Proof outline of our result

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3.04|A|-3$ can be covered by an arithmetic progression of length at most $10^{9}|A|$.
Theorem (Freiman, Deshouiller '03)
With some exceptions, for any set $\mathcal{A} \subset \mathbb{Z}_{n}$ satisfying $|\mathcal{A}| \leq 10^{-9} n$ and
$|2 \mathcal{A}| \leq 2.04|\mathcal{A}|$ there exists a subgroup $H<\mathbb{Z}$ so that \mathcal{A} is contained in an ℓ-term arithmetic progression of cosets of H where $(\ell-1)|H| \leq|2 \mathcal{A}|-|\mathcal{A}|$.

1. Normalize A and let \mathcal{A} denote the projection of A into $\mathbb{Z}_{\max (A)}$.
2. Again $|2 A| \geq|2 \mathcal{A}|+|A|$ and therefore $|2 \mathcal{A}| \leq 2.04|\mathcal{A}|$.
3. If $|\mathcal{A}|>10^{-9} \max (A)$ we are done. If not, then we note that $\ell<m / 2$ where $m=\max (A) /|H|$.

Proof outline of our result

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2 A| \leq 3.04|A|-3$ can be covered by an arithmetic progression of length at most $10^{9}|A|$.

Theorem (Freiman, Deshouiller '03)
With some exceptions, for any set $\mathcal{A} \subset \mathbb{Z}_{n}$ satisfying $|\mathcal{A}| \leq 10^{-9} n$ and
$|2 \mathcal{A}| \leq 2.04|\mathcal{A}|$ there exists a subgroup $H<\mathbb{Z}$ so that \mathcal{A} is contained in an ℓ-term arithmetic progression of cosets of H where $(\ell-1)|H| \leq|2 \mathcal{A}|-|\mathcal{A}|$.

1. Normalize A and let \mathcal{A} denote the projection of A into $\mathbb{Z}_{\max (A)}$.
2. Again $|2 A| \geq|2 \mathcal{A}|+|A|$ and therefore $|2 \mathcal{A}| \leq 2.04|\mathcal{A}|$.
3. If $|\mathcal{A}|>10^{-9} \max (A)$ we are done. If not, then we note that $\ell<m / 2$ where $m=\max (A) /|H|$.
4. It follows that the projection of A into \mathbb{Z}_{m} is rectifiable. Letting $\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{m}$ denote the projection and $\psi: \mathbb{Z}_{m} \rightarrow \mathbb{Z}$ the rectification, we note that $\{(a, \psi(\phi(a))): a \in A\} \subset \mathbb{Z}^{2}$ is F_{2}-isomorphic to A and not contained in a hyperplane, contradicting $\operatorname{dim}(A)=1$.

Proof outline of our result

Theorem (Candela, Serra, S. '18+)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.48|\mathcal{A}|-7$ and $|\mathcal{A}| \leq p / 10^{10}$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

\mathbb{Z}_{n}	$\begin{aligned} & \text { modular } \\ & \text { reduction } \end{aligned}$	\mathbb{Z}	rectification	\mathbb{Z}_{p}
'2k-1 Theorem' Kneser '53	\rightarrow	3k-4 Theorem Freiman '66 Lev, Smeliansky '95	\rightarrow	2.4k-3 Theorem Freiman '66
2.04k Theorem Freiman, Deshoullier '03	\rightarrow	ak' 3.04k Theorem		

Proof outline of our result

Theorem (Candela, Serra, S. '18+)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.48|\mathcal{A}|-7$ and $|\mathcal{A}| \leq p / 10^{10}$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

\mathbb{Z}_{n}	modular reduction	\mathbb{Z}	rectification	\mathbb{Z}_{p}
'2k-1 Theorem' Kneser '53	\rightarrow	3k-4 Theorem Freiman '66 Lev, Smeliansky '95	\rightarrow	2.4k-3 Theorem Freiman '66
2.04k Theorem Freiman, Deshoullier '03	\rightarrow	'weak' 3.04k Theorem 2-dim 3.3k Theorem Freiman '66	\searrow \rightarrow	

Proof outline of our result

Theorem (Candela, Serra, S. '18+)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2 \mathcal{A}| \leq 2.48|\mathcal{A}|-7$ and $|\mathcal{A}| \leq p / 10^{10}$ is contained in an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Proof Outline.

\mathbb{Z}_{n}	modular reduction	\mathbb{Z}	rectification	n \mathbb{Z}_{p}
'2k-1 Theorem' Kneser '53	\rightarrow	3k-4 Theorem Freiman '66 Lev, Smeliansky '95	\rightarrow	2.4k-3 Theorem Freiman '66
2.04k Theorem Freiman, Deshoullier '03	\rightarrow	'weak' 3.04k Theorem 2-dim 3.3k Theorem Freiman '66	$\begin{aligned} & \searrow \\ & \rightarrow \end{aligned}$	$2.48 \mathrm{k}-7$ Theorem

What should a complete statement look like?

What should a complete statement look like?

Theorem (Vosper '56)
Any set $\mathcal{A} \subseteq \mathbb{Z}_{p}$ satisfying $|\mathcal{A}| \geq 2$ and $|2 \mathcal{A}|=2|\mathcal{A}|-1 \leq p-2$ must be an arithmetic progression.

What should a complete statement look like?

Theorem (Vosper '56)
Any set $\mathcal{A} \subseteq \mathbb{Z}_{p}$ satisfying $|\mathcal{A}| \geq 2$ and $|2 \mathcal{A}|=2|\mathcal{A}|-1 \leq p-2$
must be an arithmetic progression.
Theorem (Serra, Zémor '08)
Any set $\mathcal{A} \subseteq \mathbb{Z}_{n}$ satisfying $|2 \mathcal{A}| \leq \min (3|\mathcal{A}|-4,(2+\epsilon)|\mathcal{A}|)$ as well as

$$
\begin{equation*}
|2 \mathcal{A}| \leq p-(|2 \mathcal{A}|-2|\mathcal{A}|+3) \tag{2}
\end{equation*}
$$

can be covered by an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

What should a complete statement look like?

Theorem (Vosper '56)

Any set $\mathcal{A} \subseteq \mathbb{Z}_{p}$ satisfying $|\mathcal{A}| \geq 2$ and $|2 \mathcal{A}|=2|\mathcal{A}|-1 \leq p-2$
must be an arithmetic progression.
Theorem (Serra, Zémor '08)
Any set $\mathcal{A} \subseteq \mathbb{Z}_{n}$ satisfying $|2 \mathcal{A}| \leq \min (3|\mathcal{A}|-4,(2+\epsilon)|\mathcal{A}|)$ as well as

$$
\begin{equation*}
|2 \mathcal{A}| \leq p-(|2 \mathcal{A}|-2|\mathcal{A}|+3) \tag{2}
\end{equation*}
$$

can be covered by an arithmetic progression of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.
Conjecture (Serra, Zémor '08)
If $|2 \mathcal{A}| \leq 3|\mathcal{A}|-4$ and $|2 \mathcal{A}| \leq p-(|2 \mathcal{A}|-2|\mathcal{A}|+3)$ then \mathcal{A} can be covered by an AP of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

What should a complete statement look like?

Example
Consider $\mathcal{A}=\{0,1,2,3,5,10\}$ in \mathbb{Z}_{19}.

What should a complete statement look like?

Example

Consider $\mathcal{A}=\{0,1,2,3,5,10\}$ in \mathbb{Z}_{19}. We have $|2 A|=14$, so that $|2 \mathcal{A}|=3|A|-4$ as well as $|2 \mathcal{A}|=p-(|2 \mathcal{A}|-2|\mathcal{A}|+3)$ but \mathcal{A} is not contained in an arithmetic progressions of size $9=|2 \mathcal{A}|-|\mathcal{A}|+1$.

What should a complete statement look like?

Example
Consider $\mathcal{A}=\{0,1,2,3,5,10\}$ in \mathbb{Z}_{19}. We have $|2 A|=14$, so that $|2 \mathcal{A}|=3|A|-4$ as well as $|2 \mathcal{A}|=p-(|2 \mathcal{A}|-2|\mathcal{A}|+3)$ but \mathcal{A} is not contained in an arithmetic progressions of size $9=|2 \mathcal{A}|-|\mathcal{A}|+1$.

Conjecture (Candela, de Roton '17; Hamidoune, Serra, Zémor '05)
If $|2 \mathcal{A}| \leq 3|\mathcal{A}|-4$ and $|2 \mathcal{A}| \leq p-(|2 \mathcal{A}|-2|\mathcal{A}|+4)$ then \mathcal{A} can be covered by an AP of size at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

What should a complete statement look like?

Example

Consider $\mathcal{A}=\{0,1,2,3,5,10\}$ in \mathbb{Z}_{19}. We have $|2 A|=14$, so that $|2 \mathcal{A}|=3|A|-4$ as well as $|2 \mathcal{A}|=p-(|2 \mathcal{A}|-2|\mathcal{A}|+3)$ but \mathcal{A} is not contained in an arithmetic progressions of size $9=|2 \mathcal{A}|-|\mathcal{A}|+1$.

Conjecture

Let a set $\mathcal{A} \subset \mathbb{Z}_{p}$ be given. If either
(i) $0 \leq|2 \mathcal{A}|-(2|\mathcal{A}|-1) \leq \min (|\mathcal{A}|-4, p-|2 \mathcal{A}|-2)$ or
(ii) $0 \leq|2 \mathcal{A}|-(2|\mathcal{A}|-1)=|\mathcal{A}|-3 \leq p-|2 \mathcal{A}|-3$
then \mathcal{A} can be covered by an AP of length at most $|2 \mathcal{A}|-|\mathcal{A}|+1$.

Thank you for your attention!

