Going beyond 2.4 in Freiman's 2.4k-Theorem

Pablo Candela Oriol Serra Christoph Spiegel

CANT 2018

New York, May 2018

UPC

INTRODUCTION		
The sumset		

Given a set $A \subset G$ in some additive group G, we define its *sumset* as

$$A + A = 2A = \{a + a' : a, a' \in A\} \subset G.$$
 (1)

Given a set $A \subset G$ in some additive group G, we define its *sumset* as

$$A + A = 2A = \{a + a' : a, a' \in A\} \subset G.$$
 (1)

This should not be confused with the dilate $2 \cdot A = \{2a : a \in A\}$.

Given a set $A \subset G$ in some additive group G, we define its *sumset* as

$$A + A = 2A = \{a + a' : a, a' \in A\} \subset G.$$
 (1)

This should not be confused with the dilate $2 \cdot A = \{2a : a \in A\}$.

Example Consider the following two sets of size *k*:

Given a set $A \subset G$ in some additive group G, we define its *sumset* as

$$A + A = 2A = \{a + a' : a, a' \in A\} \subset G.$$
 (1)

This should not be confused with the dilate $2 \cdot A = \{2a : a \in A\}$.

Example

Consider the following two sets of size *k*:

1. For $A = \{0, ..., k - 1\} \subset \mathbb{Z}$ we have |2A| = 2k - 1.

Given a set $A \subset G$ in some additive group G, we define its *sumset* as

$$A + A = 2A = \{a + a' : a, a' \in A\} \subset G.$$
 (1)

This should not be confused with the dilate $2 \cdot A = \{2a : a \in A\}$.

Example

Consider the following two sets of size *k*:

- 1. For $A = \{0, ..., k 1\} \subset \mathbb{Z}$ we have |2A| = 2k 1.
- 2. For $A = \{0, 1, 2, 4, \dots, 2^{k-2}\} \subset \mathbb{Z}$ we have $|2A| = \binom{k}{2} + 2$.

Given a set $A \subset G$ in some additive group G, we define its *sumset* as

$$A + A = 2A = \{a + a' : a, a' \in A\} \subset G.$$
 (1)

This should not be confused with the dilate $2 \cdot A = \{2a : a \in A\}$.

Example

Consider the following two sets of size *k*:

- 1. For $A = \{0, ..., k 1\} \subset \mathbb{Z}$ we have |2A| = 2k 1.
- 2. For $A = \{0, 1, 2, 4, \dots, 2^{k-2}\} \subset \mathbb{Z}$ we have $|2A| = \binom{k}{2} + 2$.

Inverse Problems: We are interested in understanding the structure of *A* when the *doubling* |2A|/|A| is small.

PROOF IDE

Some classic results

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2A| \ge 2|A| - 1$.

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2A| \ge 2|A| - 1$. Equality holds if and only if A is an arithmetic progression.

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2A| \ge 2|A| - 1$. Equality holds if and only if A is an arithmetic progression.

Theorem (Davenport '35; Cauchy 1813) Any set $\mathcal{A} \subseteq \mathbb{Z}_p$ satisfies $|2\mathcal{A}| \ge \min(2|\mathcal{A}| - 1, p)$.

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2A| \ge 2|A| - 1$. Equality holds if and only if A is an arithmetic progression.

Theorem (Davenport '35; Cauchy 1813) Any set $\mathcal{A} \subseteq \mathbb{Z}_p$ satisfies $|2\mathcal{A}| \ge \min(2|\mathcal{A}| - 1, p)$.

Theorem (Vosper '56)

Any set $A \subseteq \mathbb{Z}_p$ satisfying $|A| \ge 2$ and $|2A| = 2|A| - 1 \le p - 2$ must be an arithmetic progression.

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2A| \ge 2|A| - 1$. Equality holds if and only if A is an arithmetic progression.

Theorem (Davenport '35; Cauchy 1813) Any set $\mathcal{A} \subseteq \mathbb{Z}_p$ satisfies $|2\mathcal{A}| \ge \min(2|\mathcal{A}| - 1, p)$.

Theorem (Vosper '56)

Any set $A \subseteq \mathbb{Z}_p$ satisfying $|A| \ge 2$ and $|2A| = 2|A| - 1 \le p - 2$ must be an arithmetic progression.

Theorem (Kneser '53)

Any set $A \subseteq \mathbb{Z}_n$ satisfies $|2A| \ge 2|A + H| - |H|$ where $H = \{x \in \mathbb{Z}_n : x + 2A \subset 2A\}$ is the stabilizer of the sumset.

Proposition

Any set $A \subset \mathbb{Z}$ satisfies $|2A| \ge 2|A| - 1$. Equality holds if and only if A is an arithmetic progression.

Theorem (Davenport '35; Cauchy 1813) Any set $\mathcal{A} \subseteq \mathbb{Z}_p$ satisfies $|2\mathcal{A}| \ge \min(2|\mathcal{A}| - 1, p)$.

Theorem (Vosper '56)

Any set $A \subseteq \mathbb{Z}_p$ satisfying $|A| \ge 2$ and $|2A| = 2|A| - 1 \le p - 2$ must be an arithmetic progression.

Theorem (Kneser '53)

Any set $A \subseteq \mathbb{Z}_n$ satisfies $|2A| \ge 2|A + H| - |H|$ where $H = \{x \in \mathbb{Z}_n : x + 2A \subset 2A\}$ is the stabilizer of the sumset.

The corresponding inverse statement is due to Kemperman '60.

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2A| \leq 3|A| - 4$ is contained in an arithmetic progression of size at most |2A| - |A| + 1.

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2A| \leq 3|A| - 4$ is contained in an arithmetic progression of size at most |2A| - |A| + 1.

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2A| \leq 3|A| - 4$ is contained in an arithmetic progression of size at most |2A| - |A| + 1.

Proof due to Lev and Smeliansky '95.

1. Normalize *A*, that is consider $(A - \min(A)) / \operatorname{gcd} (A - \min(A))$.

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ satisfying $|2A| \leq 3|A| - 4$ is contained in an arithmetic progression of size at most |2A| - |A| + 1.

- 1. Normalize *A*, that is consider $(A \min(A)) / \operatorname{gcd} (A \min(A))$.
- 2. To simplify the proof, assume that $a = \max(A)$ is prime.

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ *satisfying* $|2A| \leq 3|A| - 4$ *is contained in an arithmetic progression of size at most* |2A| - |A| + 1.

- 1. Normalize *A*, that is consider $(A \min(A)) / \operatorname{gcd} (A \min(A))$.
- 2. To simplify the proof, assume that $a = \max(A)$ is prime.
- 3. Let A denote the canonical projection of A into \mathbb{Z}_a .

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ *satisfying* $|2A| \leq 3|A| - 4$ *is contained in an arithmetic progression of size at most* |2A| - |A| + 1.

- 1. Normalize *A*, that is consider $(A \min(A)) / \operatorname{gcd} (A \min(A))$.
- 2. To simplify the proof, assume that $a = \max(A)$ is prime.
- 3. Let A denote the canonical projection of A into \mathbb{Z}_a .
- 4. $|2A| = |2A| + \# \{ x \in [0,a) : x, a + x \in 2A \} + 1 \ge |2A| + |A|.$

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ *satisfying* $|2A| \leq 3|A| - 4$ *is contained in an arithmetic progression of size at most* |2A| - |A| + 1.

- 1. Normalize *A*, that is consider $(A \min(A)) / \operatorname{gcd} (A \min(A))$.
- 2. To simplify the proof, assume that $a = \max(A)$ is prime.
- 3. Let A denote the canonical projection of A into \mathbb{Z}_a .
- 4. $|2A| = |2A| + \# \{ x \in [0,a) : x, a + x \in 2A \} + 1 \ge |2A| + |A|.$
- 5. If $|2\mathcal{A}| = \max(A)$ we are done. If not, then Cauchy-Davenport gives us the contradiction $|2A| \ge 2|\mathcal{A}| 1 + |A| = 3|A| 3$.

Theorem (Freiman '66)

Any set $A \subset \mathbb{Z}$ *satisfying* $|2A| \leq 3|A| - 4$ *is contained in an arithmetic progression of size at most* |2A| - |A| + 1.

Proof due to Lev and Smeliansky '95.

- 1. Normalize *A*, that is consider $(A \min(A)) / \operatorname{gcd} (A \min(A))$.
- 2. To simplify the proof, assume that $a = \max(A)$ is prime.
- 3. Let A denote the canonical projection of A into \mathbb{Z}_a .
- 4. $|2A| = |2A| + \# \{ x \in [0,a) : x, a + x \in 2A \} + 1 \ge |2A| + |A|.$
- 5. If $|2\mathcal{A}| = \max(A)$ we are done. If not, then Cauchy-Davenport gives us the contradiction $|2A| \ge 2|\mathcal{A}| 1 + |A| = 3|A| 3$.

Example

For $k \ge 3$ and x > 2(k-2) the sets $A_x = \{0, \dots, k-2\} \cup \{x\}$ all satisfy $|2A_x| = 3|A_x| - 3$ but require arbitrarily large APs to be covered.

	THE RESULT	
Obtaining an a	nalogue in \mathbb{Z}_p	

A similar result is conjectured to hold in \mathbb{Z}_p .

	THE RESULT	
Obtaining an an	alogue in \mathbb{Z}_{v}	

A similar result is conjectured to hold in \mathbb{Z}_p .

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 3|\mathcal{A}| - 4$ as well as ______ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

A similar result is conjectured to hold in \mathbb{Z}_p .

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 3|\mathcal{A}| - 4$ as well as ______ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Corollary to Green, Ruzsa '06 $|A| \le p/10^{250}$

A similar result is conjectured to hold in \mathbb{Z}_p .

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 3|\mathcal{A}| - 4$ as well as ______ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Corollary to Green, Ruzsa '06 $|A| \le p/10^{250}$

Serra, **Zémor '08** $|2A| \le (2+\epsilon)|A| - 4$ and $|2A| \le p - (|2A| - 2|A| + 1)$

A similar result is conjectured to hold in \mathbb{Z}_p .

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 3|\mathcal{A}| - 4$ as well as ______ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Corollary to Green, Ruzsa '06 $|A| \le p/10^{250}$

Serra, **Zémor '08** $|2A| \le (2+\epsilon)|A| - 4$ and $|2A| \le p - (|2A| - 2|A| + 1)$

Freiman '66 $|2A| \le 2.4|A| - 3$ and $|A| \le p/35$

A similar result is conjectured to hold in \mathbb{Z}_p .

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 3|\mathcal{A}| - 4$ as well as ______ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Corollary to Green, Ruzsa '06 $|A| \le p/10^{250}$

Serra, **Zémor '08** $|2A| \le (2+\epsilon)|A| - 4$ and $|2A| \le p - (|2A| - 2|A| + 1)$

Freiman '66 $|2A| \le 2.4 |A| - 3$ and $|A| \le p/35$

Rødseth '06 $|2A| \le 2.4|A| - 3$ and $|A| \le p/10.7$

A similar result is conjectured to hold in \mathbb{Z}_p .

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 3|\mathcal{A}| - 4$ as well as ______ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Corollary to Green, Ruzsa '06 $|A| \le p/10^{250}$

Serra, **Zémor '08** $|2\mathcal{A}| \le (2+\epsilon)|\mathcal{A}| - 4$ and $|2\mathcal{A}| \le p - (|2\mathcal{A}| - 2|\mathcal{A}| + 1)$

Freiman '66 $|2A| \le 2.4 |A| - 3$ and $|A| \le p/35$

Rødseth '06 $|2A| \le 2.4|A| - 3$ and $|A| \le p/10.7$

Candela, Serra, S. '18+ $|2A| \le 2.48 |A| - 7$ and $|A| \le p/10^{10}$

A similar result is conjectured to hold in \mathbb{Z}_p .

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 3|\mathcal{A}| - 4$ as well as ______ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Corollary to Green, Ruzsa '06 $|A| \le p/10^{250}$

Serra, **Zémor '08** $|2\mathcal{A}| \le (2+\epsilon)|\mathcal{A}| - 4$ and $|2\mathcal{A}| \le p - (|2\mathcal{A}| - 2|\mathcal{A}| + 1)$

Freiman '66 $|2A| \le 2.4 |A| - 3$ and $|A| \le p/35$

Rødseth '06 $|2A| \le 2.4|A| - 3$ and $|A| \le p/10.7$

Candela, Serra, S. '18+ $|2A| \le 2.48 |A| - 7$ and $|A| \le p/10^{10}$

All but the second result use *rectification*, that is they Freiman-isomorphically map (part of) the set into the integers.

Theorem (Freiman '66)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.4|\mathcal{A}| - 3$ and $|\mathcal{A}| \leq p/35$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Theorem (Freiman '66)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.4|\mathcal{A}| - 3$ and $|\mathcal{A}| \leq p/35$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Proof Outline.

 Show that a small sumset implies a large Fourier coefficient of the indicator function 1_A.

Theorem (Freiman '66)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.4|\mathcal{A}| - 3$ and $|\mathcal{A}| \leq p/35$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

- Show that a small sumset implies a large Fourier coefficient of the indicator function 1_A.
- As a consequence of this large Fourier coefficient, one can *rectify* a large part A' of the set A. Call the result of that rectification A'.

Theorem (Freiman '66)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.4|\mathcal{A}| - 3$ and $|\mathcal{A}| \leq p/35$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

- Show that a small sumset implies a large Fourier coefficient of the indicator function 1_A.
- As a consequence of this large Fourier coefficient, one can *rectify* a large part A' of the set A. Call the result of that rectification A'.
- 3. Apply the 3k 4-Theorem to that part A', obtaining an efficient covering of both A' and A' through an AP with some step size d.

Theorem (Freiman '66)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.4|\mathcal{A}| - 3$ and $|\mathcal{A}| \leq p/35$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

- Show that a small sumset implies a large Fourier coefficient of the indicator function 1_A.
- As a consequence of this large Fourier coefficient, one can *rectify* a large part A' of the set A. Call the result of that rectification A'.
- 3. Apply the 3*k* 4-Theorem to that part *A*′, obtaining an efficient covering of both *A*′ and *A*′ through an AP with some step size *d*.
- 4. Shrink \mathcal{A}' into a small segment in \mathbb{Z}_p by dilating \mathcal{A} by d^{-1} .

Theorem (Freiman '66)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.4|\mathcal{A}| - 3$ and $|\mathcal{A}| \leq p/35$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

- Show that a small sumset implies a large Fourier coefficient of the indicator function 1_A.
- As a consequence of this large Fourier coefficient, one can *rectify* a large part A' of the set A. Call the result of that rectification A'.
- 3. Apply the 3*k* 4-Theorem to that part *A*′, obtaining an efficient covering of both *A*′ and *A*′ through an AP with some step size *d*.
- 4. Shrink \mathcal{A}' into a small segment in \mathbb{Z}_p by dilating \mathcal{A} by d^{-1} .
- Using the cardinality of 2*A*, argue that some *p*/2-segment of Z_{*p*} is free of elements of *A*. Hence all of *A* can be rectified.

Theorem (Freiman '66)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.4|\mathcal{A}| - 3$ and $|\mathcal{A}| \leq p/35$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

- Show that a small sumset implies a large Fourier coefficient of the indicator function 1_A.
- As a consequence of this large Fourier coefficient, one can *rectify* a large part A' of the set A. Call the result of that rectification A'.
- 3. Apply the 3*k* 4-Theorem to that part *A*′, obtaining an efficient covering of both *A*′ and *A*′ through an AP with some step size *d*.
- 4. Shrink \mathcal{A}' into a small segment in \mathbb{Z}_p by dilating \mathcal{A} by d^{-1} .
- Using the cardinality of 2*A*, argue that some *p*/2-segment of Z_{*p*} is free of elements of *A*. Hence all of *A* can be rectified.
- 6. Apply the 3k 4-Theorem to all of A, obtaining the covering.

Theorem (Candela, Serra, S. '18+)

Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.48|\mathcal{A}| - 7$ and $|\mathcal{A}| \leq p/10^{10}$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Theorem (Candela, Serra, S. '18+) Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.48|\mathcal{A}| - 7$ and $|\mathcal{A}| \leq p/10^{10}$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Theorem (Candela, Serra, S. '18+) Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.48|\mathcal{A}| - 7$ and $|\mathcal{A}| \leq p/10^{10}$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

\mathbb{Z}_n	modular reduction	\mathbb{Z}	rectificatio	ⁿ \mathbb{Z}_p
'2k-1 Theorem' Kneser '53	\rightarrow	3k-4 Theorem Freiman '66 Lev, Smeliansky '95	\rightarrow	2.4k-3 Theorem Freiman '66

Theorem (Candela, Serra, S. '18+) Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.48|\mathcal{A}| - 7$ and $|\mathcal{A}| \leq p/10^{10}$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Proof Outline.

\mathbb{Z}_n	modular reduction	\mathbb{Z}	rectificati	ion	\mathbb{Z}_p
'2k-1 Theorem' Kneser '53	\rightarrow	3k-4 Theorem Freiman '66 Lev, Smeliansky '95	\rightarrow	2.4k- Fre	3 Theorem eiman '66
2.04k Theorem					

Freiman, Deshoullier '03

Theorem (Candela, Serra, S. '18+) Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.48|\mathcal{A}| - 7$ and $|\mathcal{A}| \leq p/10^{10}$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

\mathbb{Z}_n	modular reduction	\mathbb{Z}	rectificati	ion Zp
'2k-1 Theorem' Kneser '53	\rightarrow	3k-4 Theorem Freiman '66 Lev, Smeliansky '95	\rightarrow	2.4k-3 Theorem Freiman '66
2.04k Theorem <i>Freiman</i> , <i>Deshoullier</i> '03	\rightarrow	'weak' 3.04k Theorem		

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2A| \leq 3.04|A| - 3$ can be covered by an arithmetic progression of length at most $10^9|A|$.

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2A| \leq 3.04|A| - 3$ can be covered by an arithmetic progression of length at most $10^9|A|$.

Theorem (Freiman, Deshouiller '03)

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2A| \leq 3.04|A| - 3$ can be covered by an arithmetic progression of length at most $10^9|A|$.

Theorem (Freiman, Deshouiller '03)

With some exceptions, for any set $\mathcal{A} \subset \mathbb{Z}_n$ satisfying $|\mathcal{A}| \leq 10^{-9}n$ and $|2\mathcal{A}| \leq 2.04|\mathcal{A}|$ there exists a subgroup $H < \mathbb{Z}$ so that \mathcal{A} is contained in an ℓ -term arithmetic progression of cosets of H where $(\ell - 1)|H| \leq |2\mathcal{A}| - |\mathcal{A}|$.

1. Normalize *A* and let *A* denote the projection of *A* into $\mathbb{Z}_{\max(A)}$.

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2A| \leq 3.04|A| - 3$ can be covered by an arithmetic progression of length at most $10^9|A|$.

Theorem (Freiman, Deshouiller '03)

- 1. Normalize *A* and let *A* denote the projection of *A* into $\mathbb{Z}_{\max(A)}$.
- 2. Again $|2A| \ge |2A| + |A|$ and therefore $|2A| \le 2.04|A|$.

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2A| \leq 3.04|A| - 3$ can be covered by an arithmetic progression of length at most $10^9|A|$.

Theorem (Freiman, Deshouiller '03)

- 1. Normalize *A* and let *A* denote the projection of *A* into $\mathbb{Z}_{\max(A)}$.
- 2. Again $|2A| \ge |2A| + |A|$ and therefore $|2A| \le 2.04|A|$.
- 3. If $|A| > 10^{-9} \max(A)$ we are done.

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2A| \leq 3.04|A| - 3$ can be covered by an arithmetic progression of length at most $10^9|A|$.

Theorem (Freiman, Deshouiller '03)

- 1. Normalize *A* and let *A* denote the projection of *A* into $\mathbb{Z}_{\max(A)}$.
- 2. Again $|2A| \ge |2A| + |A|$ and therefore $|2A| \le 2.04|A|$.
- 3. If $|\mathcal{A}| > 10^{-9} \max(A)$ we are done. If not, then we note that $\ell < m/2$ where $m = \max(A)/|H|$.

Proposition

Any 1-dimensional set $A \subset \mathbb{Z}$ satisfying $|2A| \leq 3.04|A| - 3$ can be covered by an arithmetic progression of length at most $10^9|A|$.

Theorem (Freiman, Deshouiller '03)

- 1. Normalize *A* and let *A* denote the projection of *A* into $\mathbb{Z}_{\max(A)}$.
- 2. Again $|2A| \ge |2A| + |A|$ and therefore $|2A| \le 2.04|A|$.
- 3. If $|\mathcal{A}| > 10^{-9} \max(A)$ we are done. If not, then we note that $\ell < m/2$ where $m = \max(A)/|H|$.
- 4. It follows that the projection of *A* into \mathbb{Z}_m is rectifiable. Letting $\phi : \mathbb{Z} \to \mathbb{Z}_m$ denote the projection and $\psi : \mathbb{Z}_m \to \mathbb{Z}$ the rectification, we note that $\{(a, \psi(\phi(a))) : a \in A\} \subset \mathbb{Z}^2$ is *F*₂-isomorphic to *A* and not contained in a hyperplane, contradicting dim(*A*) = 1. \Box

Theorem (Candela, Serra, S. '18+) Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.48|\mathcal{A}| - 7$ and $|\mathcal{A}| \leq p/10^{10}$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

\mathbb{Z}_n	modular reduction	Z	rectification	\mathbb{Z}_p
'2k-1 Theorem' Kneser '53	\rightarrow	3k-4 Theorem Freiman '66 Lev, Smeliansky '95	\rightarrow	2.4k-3 Theorem Freiman '66
2.04k Theorem <i>Freiman</i> , <i>Deshoullier</i> '03	\rightarrow	'weak' 3.04k Theorem		

Theorem (Candela, Serra, S. '18+) Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.48|\mathcal{A}| - 7$ and $|\mathcal{A}| \leq p/10^{10}$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

\mathbb{Z}_n	modular reduction	\mathbb{Z}	rectification	\mathbb{Z}_p
'2k-1 Theorem' Kneser '53	\rightarrow	3k-4 Theorem Freiman '66 Lev, Smeliansky '95	\rightarrow	2.4k-3 Theorem Freiman '66
2.04k Theorem Freiman, Deshoullier '03	\rightarrow	'weak' 3.04k Theorem	\searrow	
		2-dim 3.3k Theorem Freiman '66	\rightarrow	

Theorem (Candela, Serra, S. '18+) Any set $\mathcal{A} \subset \mathbb{Z}$ satisfying $|2\mathcal{A}| \leq 2.48|\mathcal{A}| - 7$ and $|\mathcal{A}| \leq p/10^{10}$ is contained in an arithmetic progression of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

\mathbb{Z}_n	modular reduction	\mathbb{Z}	rectification	\mathbb{Z}_p
'2k-1 Theorem' Kneser '53	\rightarrow	3k-4 Theorem Freiman '66 Lev, Smeliansky '95	\rightarrow	2.4k-3 Theorem Freiman '66
2.04k Theorem <i>Freiman, Deshoullier '03</i>	\rightarrow	'weak' 3.04k Theorem	\searrow	
		2-dim 3.3k Theorem Freiman '66	\rightarrow	2.48k-7 Theorem

Theorem (Vosper '56)

Any set $A \subseteq \mathbb{Z}_p$ satisfying $|A| \ge 2$ and $|2A| = 2|A| - 1 \le p - 2$ must be an arithmetic progression.

Theorem (Vosper '56)

Any set $A \subseteq \mathbb{Z}_p$ satisfying $|A| \ge 2$ and $|2A| = 2|A| - 1 \le p - 2$ must be an arithmetic progression.

Theorem (Serra, Zémor '08) Any set $\mathcal{A} \subseteq \mathbb{Z}_n$ satisfying $|2\mathcal{A}| \le \min(3|\mathcal{A}| - 4, (2 + \epsilon)|\mathcal{A}|)$ as well as $|2\mathcal{A}| \le p - (|2\mathcal{A}| - 2|\mathcal{A}| + 3)$ (2)

can be covered by an arithmetic progression of size at most |2A| - |A| + 1.

Theorem (Vosper '56)

Any set $A \subseteq \mathbb{Z}_p$ satisfying $|A| \ge 2$ and $|2A| = 2|A| - 1 \le p - 2$ must be an arithmetic progression.

Theorem (Serra, Zémor '08) Any set $\mathcal{A} \subseteq \mathbb{Z}_n$ satisfying $|2\mathcal{A}| \le \min(3|\mathcal{A}| - 4, (2 + \epsilon)|\mathcal{A}|)$ as well as $|2\mathcal{A}| \le p - (|2\mathcal{A}| - 2|\mathcal{A}| + 3)$ (2)

can be covered by an arithmetic progression of size at most |2A| - |A| + 1*.*

Conjecture (Serra, Zémor '08) If $|2A| \le 3|A| - 4$ and $|2A| \le p - (|2A| - 2|A| + 3)$ then A can be covered by an AP of size at most |2A| - |A| + 1.

Example Consider $\mathcal{A} = \{0, 1, 2, 3, 5, 10\}$ in \mathbb{Z}_{19} .

Example

Consider $\mathcal{A} = \{0, 1, 2, 3, 5, 10\}$ in \mathbb{Z}_{19} . We have $|2\mathcal{A}| = 14$, so that $|2\mathcal{A}| = 3|\mathcal{A}| - 4$ as well as $|2\mathcal{A}| = p - (|2\mathcal{A}| - 2|\mathcal{A}| + 3)$ but \mathcal{A} is not contained in an arithmetic progressions of size $9 = |2\mathcal{A}| - |\mathcal{A}| + 1$.

Example

Consider $\mathcal{A} = \{0, 1, 2, 3, 5, 10\}$ in \mathbb{Z}_{19} . We have $|2\mathcal{A}| = 14$, so that $|2\mathcal{A}| = 3|\mathcal{A}| - 4$ as well as $|2\mathcal{A}| = p - (|2\mathcal{A}| - 2|\mathcal{A}| + 3)$ but \mathcal{A} is not contained in an arithmetic progressions of size $9 = |2\mathcal{A}| - |\mathcal{A}| + 1$.

Conjecture (Candela, de Roton '17; Hamidoune, Serra, Zémor '05) If $|2\mathcal{A}| \leq 3|\mathcal{A}| - 4$ and $|2\mathcal{A}| \leq p - (|2\mathcal{A}| - 2|\mathcal{A}| + 4)$ then \mathcal{A} can be covered by an AP of size at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Example

Consider $\mathcal{A} = \{0, 1, 2, 3, 5, 10\}$ in \mathbb{Z}_{19} . We have $|2\mathcal{A}| = 14$, so that $|2\mathcal{A}| = 3|\mathcal{A}| - 4$ as well as $|2\mathcal{A}| = p - (|2\mathcal{A}| - 2|\mathcal{A}| + 3)$ but \mathcal{A} is not contained in an arithmetic progressions of size $9 = |2\mathcal{A}| - |\mathcal{A}| + 1$.

Conjecture Let a set $\mathcal{A} \subset \mathbb{Z}_p$ be given. If either (i) $0 \le |2\mathcal{A}| - (2|\mathcal{A}| - 1) \le \min(|\mathcal{A}| - 4, p - |2\mathcal{A}| - 2)$ or (ii) $0 \le |2\mathcal{A}| - (2|\mathcal{A}| - 1) = |\mathcal{A}| - 3 \le p - |2\mathcal{A}| - 3$ then \mathcal{A} can be covered by an AP of length at most $|2\mathcal{A}| - |\mathcal{A}| + 1$.

Thank you for your attention!