Going beyond 2.4 in
Freiman’s 2.4k-Theorem

Pablo Candela Oriol Serra  Christoph Spiegel

CANT 2018
New York, May 2018

The City UNIVERSITAT POLITECNICA
I Ufwvur"ﬂlv DE CATALUNYA & BGSMath
\ BARCELONATECH

o
New York




INTRODUCTION

The sumset

Definition
Given a set A C G in some additive group G, we define its sumset as

A+A=2A={a+d :a,d € A} CG. 1)



INTRODUCTION

The sumset
Definition
Given a set A C G in some additive group G, we define its sumset as
A+A=2A={a+d :a,d € A} CG. 1)

This should not be confused with the dilate2- A = {2a : a € A}.



INTRODUCTION

The sumset
Definition
Given a set A C G in some additive group G, we define its sumset as
A+A=2A={a+d :a,d € A} CG. 1)
This should not be confused with the dilate2- A = {2a : a € A}.

Example

Consider the following two sets of size k:



INTRODUCTION

The sumset
Definition
Given a set A C G in some additive group G, we define its sumset as
A+A=2A={a+d :a,d € A} CG. 1)
This should not be confused with the dilate2- A = {2a : a € A}.

Example

Consider the following two sets of size k:

1. ForA={0,...,k—1} C Zwehave 24| =2k — 1.



INTRODUCTION

The sumset
Definition
Given a set A C G in some additive group G, we define its sumset as
A+A=2A={a+d :a,d € A} CG. 1)
This should not be confused with the dilate2- A = {2a : a € A}.

Example

Consider the following two sets of size k:
1. ForA={0,...,k—1} C Zwehave 24| =2k — 1.

2. For A ={0,1,2,4,...,2°2} C Z we have 24| = (§) +2.



INTRODUCTION

The sumset
Definition
Given a set A C G in some additive group G, we define its sumset as
A+A=2A={a+d :a,d € A} CG. (1)
This should not be confused with the dilate2- A = {2a : a € A}.

Example

Consider the following two sets of size k:
1. ForA={0,...,k—1} C Zwehave 24| =2k — 1.

2. For A=1{0,1,2,4,...,2°2} C Z wehave |24] = (}) +2.

Inverse Problems: We are interested in understanding
the structure of A when the doubling |2A|/|A] is small.
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Some classic results

Proposition
Any set A C Z satisfies |2A| > 2|A| — 1. Equality holds
if and only if A is an arithmetic progression.

Theorem (Davenport "35; Cauchy 1813)
Any set A C 7, satisfies [2A| > min(2|A| — 1,p).

Theorem (Vosper '56)
Any set A C 7, satisfying |A| > 2 and |2A] = 2|A| -1 <p -2
must be an arithmetic progression.

Theorem (Kneser '53)
Any set A C Z, satisfies |2A| > 2| A + H| — |H| where
H={x€Z,:x+2A C 2A} is the stabilizer of the sumset.

The corresponding inverse statement is due to Kemperman "60.
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Freiman’s 3k — 4 Theorem in Z

Theorem (Freiman "66)

Any set A C Z satisfying |2A| < 3|A| — 4 is contained in an arithmetic
progression of size at most |2A| — |A| + 1.

Proof due to Lev and Smeliansky "95.

1.

2
3
4
5

Normalize A, that is consider (A — min(A))/ged (A — min(A)).

. To simplify the proof, assume that 2 = max(A) is prime.

. Let A denote the canonical projection of A into Z,.

. 2A| = 24| + #{x € [0,a) : x,a + x € 2A} + 1 > |2A] + |A|.

. If |2A] = max(A) we are done. If not, then Cauchy-Davenport

gives us the contradiction [2A| > 2| A| — 1 + |A| = 3|A| — 3. O

Example

Fork > 3 and x > 2(k — 2) the sets Ay = {0, ...,k — 2} U {x} all satisfy
|2A,| = 3|A| — 3 but require arbitrarily large APs to be covered.
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Obtaining an analogue in Z,

A similar result is conjectured to hold in Z,.

Any set A C Z satisfying |2A] < 3|A| — 4 as well as is
contained in an arithmetic progression of size at most [2A| — |A| + 1.

Corollary to Green, Ruzsa '06 |A| < p/10?°

Serra, Zémor '08 [2A| < (2+¢)|A| —4and [24] < p— (|24 - 2|A|+1)
Freiman "66 24| < 2.4|A| —3and | 4| < p/35

Rodseth 06 [2A4| < 2.4|A| —3and |A| < p/10.7

Candela, Serra, S. 18+ |2A4| < 2.48|A| — 7 and |A| < p/10%°

All but the second result use rectification, that is they Freiman-isomorphically
map (part of) the set into the integers.
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Theorem (Freiman "66)

Any set A C Z satisfying |2A| < 2.4|A| — 3 and | A| < p/35 is contained in
an arithmetic progression of size at most |2A| — |A| + 1.

Proof Outline.

1. Show that a small sumset implies a large Fourier coefficient of the
indicator function 1 4.

2. As a consequence of this large Fourier coefficient, one can rectify a
large part A’ of the set A. Call the result of that rectification A’.

3. Apply the 3k — 4-Theorem to that part A’, obtaining an efficient
covering of both A" and A’ through an AP with some step size d.

4. Shrink A’ into a small segment in Z, by dilating A by d~'.

5. Using the cardinality of 2.4, argue that some p/2-segment of Z, is
free of elements of .A. Hence all of A can be rectified.

6. Apply the 3k — 4-Theorem to all of A, obtaining the covering. [
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Proposition

Any 1-dimensional set A C Z satisfying |2A| < 3.04|A| — 3 can be covered
by an arithmetic progression of length at most 10°|A|.

Theorem (Freiman, Deshouiller "03)
With some exceptions, for any set A C Z, satisfying | A| < 10~%n and
|2A] < 2.04|A| there exists a subgroup H < 7Z so that A is contained in an
C-term arithmetic progression of cosets of H where (¢ — 1)|H| < |2A| — | AJ.
1. Normalize A and let A denote the projection of A into Z,ax(a)-
2. Again [2A| > |2 A] 4 |A| and therefore [2.A| < 2.04|A|.
3. If |A| > 1079 max(A) we are done. If not, then we note that
¢ < m/2 where m = max(A)/|H|.
4. Tt follows that the projection of A into Z,, is rectifiable. Letting
¢ : Z. — Ly, denote the projection and ¢ : Z,, — Z the rectification,
we note that {(a,¢(¢(a))) :a € A} C Z? is Fr-isomorphic to A
and not contained in a hyperplane, contradicting dim(A) =1. O
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Theorem (Vosper '56)

Any set A C 7, satisfying |A| > 2 and 2A] = 2|A| -1 <p -2
must be an arithmetic progression.

Theorem (Serra, Zémor "08)

Any set A C Z, satisfying |2.A] < min(3|A| — 4, (2 + €)|A|) as well as
2A] <p = ([2A] = 2|A] +3) )

can be covered by an arithmetic progression of size at most [2A| — | A| + 1.

Conjecture (Serra, Zémor '08)

If2A| <3| A| —4and 2A] <p — (|2A| — 2| A| + 3) then A can be covered
by an AP of size at most [2A| — |A| + 1.



REMARKS

What should a complete statement look like?

Example
Consider A = {0,1,2,3,5,10} in Z9.
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What should a complete statement look like?

Example

Consider A = {0,1,2,3,5,10} in Z19. We have |2A| = 14, so that
[2A] = 3|A| —4 aswell as |2A4| = p — (]2A] — 2| A| + 3) but A is not
contained in an arithmetic progressions of size 9 = [2A| — |A] + 1.



REMARKS

What should a complete statement look like?

Example

Consider A = {0,1,2,3,5,10} in Z19. We have |2A| = 14, so that
[2A] = 3|A| —4 aswell as |2A4| = p — (]2A] — 2| A| + 3) but A is not
contained in an arithmetic progressions of size 9 = [2A| — |A] + 1.

Conjecture (Candela, de Roton "17; Hamidoune, Serra, Zémor ’05)

If 24| < 3|A| —4and 2A] <p — (|24] - 2|4
by an AP of size at most [2A| — |A| + 1.

+ 4) then A can be covered



REMARKS

What should a complete statement look like?

Example

Consider A = {0,1,2,3,5,10} in Z19. We have |2A| = 14, so that
|2A| = 3|A| — 4 as well as [2A| = p — (|2A] — 2| A| + 3) but A is not
contained in an arithmetic progressions of size 9 = |24| — | A| + 1.

Conjecture
Let a set A C Zy be given. If either

(i) 0<[2A4] = (2]A] — 1) < min(JA| — 4,p — [24] — 2) or
(i) 0 < [2A] - (2]4] —1) = |A| -3 <p—[24]| -3
then A can be covered by an AP of length at most [2A| — | A| + 1.




REMARKS

Thank you for your attention!
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