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INTRODUCTION THE RESULT PROOF IDEA REMARKS

The sumset

Definition
Given a set A ⊂ G in some additive group G, we define its sumset as

A + A = 2A = {a + a′ : a, a′ ∈ A} ⊂ G. (1)

This should not be confused with the dilate 2 · A = {2a : a ∈ A}.

Example
Consider the following two sets of size k:

1. For A = {0, . . . , k− 1} ⊂ Z we have |2A| = 2k− 1.

2. For A = {0, 1, 2, 4, . . . , 2k−2} ⊂ Z we have |2A| =
(k

2

)
+ 2.

Inverse Problems: We are interested in understanding
the structure of A when the doubling |2A|/|A| is small.
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INTRODUCTION THE RESULT PROOF IDEA REMARKS

Some classic results

Proposition
Any set A ⊂ Z satisfies |2A| ≥ 2|A| − 1.

Equality holds
if and only if A is an arithmetic progression.

Theorem (Davenport ’35; Cauchy 1813)
Any set A ⊆ Zp satisfies |2A| ≥ min(2|A| − 1, p).

Theorem (Vosper ’56)
Any set A ⊆ Zp satisfying |A| ≥ 2 and |2A| = 2|A| − 1 ≤ p− 2
must be an arithmetic progression.

Theorem (Kneser ’53)
Any set A ⊆ Zn satisfies |2A| ≥ 2|A+ H| − |H| where
H = {x ∈ Zn : x + 2A ⊂ 2A} is the stabilizer of the sumset.

The corresponding inverse statement is due to Kemperman ’60.
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Freiman’s 3k − 4 Theorem in Z

Theorem (Freiman ’66)
Any set A ⊂ Z satisfying |2A| ≤ 3|A| − 4 is contained in an arithmetic
progression of size at most |2A| − |A|+ 1.

Proof due to Lev and Smeliansky ’95.
1. Normalize A, that is consider

(
A−min(A)

)
/ gcd

(
A−min(A)

)
.

2. To simplify the proof, assume that a = max(A) is prime.

3. Let A denote the canonical projection of A into Za.

4. |2A| = |2A|+#
{

x ∈ [0, a) : x, a + x ∈ 2A
}
+ 1 ≥ |2A|+ |A|.

5. If |2A| = max(A) we are done. If not, then Cauchy-Davenport
gives us the contradiction |2A| ≥ 2|A| − 1 + |A| = 3|A| − 3.

Example
For k ≥ 3 and x > 2(k− 2) the sets Ax = {0, . . . , k− 2} ∪ {x} all satisfy
|2Ax| = 3|Ax| − 3 but require arbitrarily large APs to be covered.
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Obtaining an analogue in Zp

A similar result is conjectured to hold in Zp.

Any set A ⊂ Z satisfying |2A| ≤ 3|A| − 4 as well as is
contained in an arithmetic progression of size at most |2A| − |A|+ 1.

Corollary to Green, Ruzsa ’06 |A| ≤ p/10250

Serra, Zémor ’08 |2A| ≤ (2+ ε)|A|−4 and |2A| ≤ p−
(
|2A|−2|A|+1

)
Freiman ’66 |2A| ≤ 2.4|A| − 3 and |A| ≤ p/35

Rødseth ’06 |2A| ≤ 2.4|A| − 3 and |A| ≤ p/10.7

Candela, Serra, S. ’18+ |2A| ≤ 2.48|A| − 7 and |A| ≤ p/1010

All but the second result use rectification, that is they Freiman-isomorphically
map (part of) the set into the integers.
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Proof outl ine of Freiman’s 2.4k-Theorem

Theorem (Freiman ’66)
Any set A ⊂ Z satisfying |2A| ≤ 2.4|A| − 3 and |A| ≤ p/35 is contained in
an arithmetic progression of size at most |2A| − |A|+ 1.

Proof Outline.

1. Show that a small sumset implies a large Fourier coefficient of the
indicator function 1A.

2. As a consequence of this large Fourier coefficient, one can rectify a
large part A′ of the set A. Call the result of that rectification A′.

3. Apply the 3k− 4-Theorem to that part A′, obtaining an efficient
covering of both A′ and A′ through an AP with some step size d.

4. Shrink A′ into a small segment in Zp by dilating A by d−1.

5. Using the cardinality of 2A, argue that some p/2-segment of Zp is
free of elements of A. Hence all of A can be rectified.

6. Apply the 3k− 4-Theorem to all of A, obtaining the covering.
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Proof outl ine of our result

Theorem (Candela, Serra, S. ’18+)
Any set A ⊂ Z satisfying |2A| ≤ 2.48|A| − 7 and |A| ≤ p/1010 is contained
in an arithmetic progression of size at most |2A| − |A|+ 1.

Proof Outline.

Zn modular
reduction Z rectification Zp

‘2k-1 Theorem’
Kneser ’53

→
3k-4 Theorem

Freiman ’66
Lev, Smeliansky ’95

→ 2.4k-3 Theorem
Freiman ’66

2.04k Theorem
Freiman, Deshoullier ’03

→ ’weak’ 3.04k Theorem
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Proof outl ine of our result

Proposition
Any 1-dimensional set A ⊂ Z satisfying |2A| ≤ 3.04|A| − 3 can be covered
by an arithmetic progression of length at most 109|A|.

Theorem (Freiman, Deshouiller ’03)
With some exceptions, for any set A ⊂ Zn satisfying |A| ≤ 10−9n and
|2A| ≤ 2.04|A| there exists a subgroup H < Z so that A is contained in an
`-term arithmetic progression of cosets of H where (`− 1)|H| ≤ |2A| − |A|.

1. Normalize A and let A denote the projection of A into Zmax(A).

2. Again |2A| ≥ |2A|+ |A| and therefore |2A| ≤ 2.04|A|.
3. If |A| > 10−9 max(A) we are done. If not, then we note that
` < m/2 where m = max(A)/|H|.

4. It follows that the projection of A into Zm is rectifiable. Letting
φ : Z→ Zm denote the projection and ψ : Zm → Z the rectification,
we note that

{(
a, ψ(φ(a))

)
: a ∈ A

}
⊂ Z2 is F2-isomorphic to A

and not contained in a hyperplane, contradicting dim(A) = 1.
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2-dim 3.3k Theorem
Freiman ’66

→ 2.48k-7 Theorem
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What should a complete statement look like?

Theorem (Vosper ’56)
Any set A ⊆ Zp satisfying |A| ≥ 2 and |2A| = 2|A| − 1 ≤ p− 2
must be an arithmetic progression.

Theorem (Serra, Zémor ’08)
Any set A ⊆ Zn satisfying |2A| ≤ min(3|A| − 4, (2 + ε)|A|) as well as

|2A| ≤ p− (|2A| − 2|A|+ 3) (2)

can be covered by an arithmetic progression of size at most |2A| − |A|+ 1.

Conjecture (Serra, Zémor ’08)
If |2A| ≤ 3|A| − 4 and |2A| ≤ p− (|2A| − 2|A|+ 3) then A can be covered
by an AP of size at most |2A| − |A|+ 1.
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What should a complete statement look like?

Example
Consider A = {0, 1, 2, 3, 5, 10} in Z19.

We have |2A| = 14, so that
|2A| = 3|A| − 4 as well as |2A| = p− (|2A| − 2|A|+ 3) but A is not
contained in an arithmetic progressions of size 9 = |2A| − |A|+ 1.

Conjecture (Candela, de Roton ’17; Hamidoune, Serra, Zémor ’05)
If |2A| ≤ 3|A| − 4 and |2A| ≤ p− (|2A| − 2|A|+ 4) then A can be covered
by an AP of size at most |2A| − |A|+ 1.



INTRODUCTION THE RESULT PROOF IDEA REMARKS

What should a complete statement look like?

Example
Consider A = {0, 1, 2, 3, 5, 10} in Z19. We have |2A| = 14, so that
|2A| = 3|A| − 4 as well as |2A| = p− (|2A| − 2|A|+ 3) but A is not
contained in an arithmetic progressions of size 9 = |2A| − |A|+ 1.

Conjecture (Candela, de Roton ’17; Hamidoune, Serra, Zémor ’05)
If |2A| ≤ 3|A| − 4 and |2A| ≤ p− (|2A| − 2|A|+ 4) then A can be covered
by an AP of size at most |2A| − |A|+ 1.



INTRODUCTION THE RESULT PROOF IDEA REMARKS

What should a complete statement look like?

Example
Consider A = {0, 1, 2, 3, 5, 10} in Z19. We have |2A| = 14, so that
|2A| = 3|A| − 4 as well as |2A| = p− (|2A| − 2|A|+ 3) but A is not
contained in an arithmetic progressions of size 9 = |2A| − |A|+ 1.

Conjecture (Candela, de Roton ’17; Hamidoune, Serra, Zémor ’05)
If |2A| ≤ 3|A| − 4 and |2A| ≤ p− (|2A| − 2|A|+ 4) then A can be covered
by an AP of size at most |2A| − |A|+ 1.



INTRODUCTION THE RESULT PROOF IDEA REMARKS
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Consider A = {0, 1, 2, 3, 5, 10} in Z19. We have |2A| = 14, so that
|2A| = 3|A| − 4 as well as |2A| = p− (|2A| − 2|A|+ 3) but A is not
contained in an arithmetic progressions of size 9 = |2A| − |A|+ 1.

Conjecture
Let a set A ⊂ Zp be given. If either

(i) 0 ≤ |2A| −
(
2|A| − 1

)
≤ min(|A| − 4, p− |2A| − 2) or

(ii) 0 ≤ |2A| −
(
2|A| − 1

)
= |A| − 3 ≤ p− |2A| − 3

then A can be covered by an AP of length at most |2A| − |A|+ 1.
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Thank you for your attention!
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