

New Ramsey Multiplicity Bounds and Search Heuristics

Discrete Mathematics Days 2022

Christoph Spiegel

5th of July 2022

Results are joint work with...

Olaf Parczyk Freie Universität Berlin

Sebastian Pokutta Zuse Institute Berlin Tibor Szabó Freie Universität Berlin

Research partially funded through Math+ project EF1-12

Ramsey Multiplicity Bounds and Search Heuristics

f 1 . The Ramsey Multiplicity Problem

2. Search Heuristics for Upper Bounds

3. Some Context and Related Problems

$$c_t(n) = \min\{k_t(\overline{G}) + k_t(G) : |G| = n\}.$$

Theorem (Ramsey 1930)

For every $t \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ such that $c_t(n) > 0$ iff $n \ge n_0$.

Let us write $c_t = \lim_{n\to\infty} c_t(n)$. Goodman showed that $c_3 = 1/4$ in 1959. Erdős conjectured that $c_t = 2^{1-\binom{t}{2}}$ in 1962 and this was extended by Burr and Rosta.

$$c_4 \leq 0.976 \cdot 2^{-5}, c_5 \leq 0.906 \cdot 2^{-9}, and c_t \leq 0.936 \cdot 2^{1-\binom{t}{2}} \text{ for } t \geq 6.$$

$$c_t(n) = \min\{k_t(\overline{G}) + k_t(G) : |G| = n\}.$$

Theorem (Ramsey 1930)

For every $t \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ such that $c_t(n) > 0$ iff $n \ge n_0$.

Let us write $c_t = \lim_{n\to\infty} c_t(n)$. Goodman showed that $c_3 = 1/4$ in 1959. Erdős conjectured that $c_t = 2^{1-\binom{t}{2}}$ in 1962 and this was extended by Burr and Rosta.

$$c_4 \leq 0.976 \cdot 2^{-5}$$
, $c_5 \leq 0.906 \cdot 2^{-9}$, and $c_t \leq 0.936 \cdot 2^{1-\binom{t}{2}}$ for $t \geq 6$.

$$c_t(n) = \min\{k_t(\overline{G}) + k_t(G) : |G| = n\}.$$

Theorem (Ramsey 1930)

For every $t \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ such that $c_t(n) > 0$ iff $n \ge n_0$.

Let us write $c_t = \lim_{n\to\infty} c_t(n)$. Goodman showed that $c_3 = 1/4$ in 1959. Erdős conjectured that $c_t = 2^{1-\binom{t}{2}}$ in 1962 and this was extended by Burr and Rosta.

$$c_4 \leq 0.976 \cdot 2^{-5}$$
, $c_5 \leq 0.906 \cdot 2^{-9}$, and $c_t \leq 0.936 \cdot 2^{1-\binom{t}{2}}$ for $t \geq 6$.

$$c_t(n) = \min\{k_t(\overline{G}) + k_t(G) : |G| = n\}.$$

Theorem (Ramsey 1930)

For every $t \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ such that $c_t(n) > 0$ iff $n \ge n_0$.

Let us write $c_t = \lim_{n\to\infty} c_t(n)$. Goodman showed that $c_3 = 1/4$ in 1959. Erdős conjectured that $c_t = 2^{1-\binom{t}{2}}$ in 1962 and this was extended by Burr and Rosta.

$$c_4 \leq 0.976 \cdot 2^{-5}$$
, $c_5 \leq 0.906 \cdot 2^{-9}$, and $c_t \leq 0.936 \cdot 2^{1-\binom{t}{2}}$ for $t \geq 6$.

$$c_t(n) = \min\{k_t(\overline{G}) + k_t(G) : |G| = n\}.$$

Theorem (Ramsey 1930)

For every $t \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ such that $c_t(n) > 0$ iff $n \ge n_0$.

Let us write $c_t = \lim_{n\to\infty} c_t(n)$. Goodman showed that $c_3 = 1/4$ in 1959. Erdős conjectured that $c_t = 2^{1-\binom{t}{2}}$ in 1962 and this was extended by Burr and Rosta.

$$c_4 \leq 0.976 \cdot 2^{-5}$$
, $c_5 \leq 0.906 \cdot 2^{-9}$, and $c_t \leq 0.936 \cdot 2^{1-\binom{t}{2}}$ for $t \geq 6$.

$$c_t(n) = \min\{k_t(\overline{G}) + k_t(G) : |G| = n\}.$$

Theorem (Ramsey 1930)

For every $t \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ such that $c_t(n) > 0$ iff $n \ge n_0$.

Let us write $c_t = \lim_{n\to\infty} c_t(n)$. Goodman showed that $c_3 = 1/4$ in 1959. Erdős conjectured that $c_t = 2^{1-\binom{t}{2}}$ in 1962 and this was extended by Burr and Rosta.

$$c_4 \leq 0.976 \cdot 2^{-5}$$
, $c_5 \leq 0.906 \cdot 2^{-9}$, and $c_t \leq 0.936 \cdot 2^{1-\binom{t}{2}}$ for $t \geq 6$.

$$c_t(n) = \min\{k_t(\overline{G}) + k_t(G) : |G| = n\}.$$

Theorem (Ramsey 1930)

For every $t \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ such that $c_t(n) > 0$ iff $n \ge n_0$.

Let us write $c_t = \lim_{n\to\infty} c_t(n)$. Goodman showed that $c_3 = 1/4$ in 1959. Erdős conjectured that $c_t = 2^{1-\binom{t}{2}}$ in 1962 and this was extended by Burr and Rosta.

Theorem (Thomason 1989 / 1997)

$$c_4 \leq 0.970 \cdot 2^{-5}$$
, $c_5 \leq 0.881 \cdot 2^{-9}$, and $c_t \leq 0.936 \cdot 2^{1-\binom{t}{2}}$ for $t \geq 6$.

Lower bounds and new results

Theorem (Thomason 1989 / 1997)

$$c_4 \leq 0.970 \cdot 2^{-5}$$
, $c_5 \leq 0.881 \cdot 2^{-9}$, and $c_t \leq 0.936 \cdot 2^{1-\binom{t}{2}}$ for $t \geq 6$.

Theorem (Conlon 2011)

$$c_t \geq 2.18^{-t^2(1+o(1))}$$
 for any $t \geq 4$, implying $c_t \cdot 2^{\binom{t}{2}-1} = \Omega(2^{-0.62t^2})$.

Open Problem. Do we even have $c_t \cdot 2^{\binom{t}{2}-1} = o(1)$?

Lower bounds and new results

Theorem (Thomason 1989 / 1997)

$$c_4 \leq 0.970 \cdot 2^{-5}$$
, $c_5 \leq 0.881 \cdot 2^{-9}$, and $c_t \leq 0.936 \cdot 2^{1-\binom{t}{2}}$ for $t \geq 6$.

Theorem (Conlon 2011)

$$c_t \geq 2.18^{-t^2(1+o(1))}$$
 for any $t \geq 4$, implying $c_t \cdot 2^{\binom{t}{2}-1} = \Omega(2^{-0.62t^2})$.

Open Problem. Do we even have $c_t \cdot 2^{\binom{t}{2}-1} = o(1)$?

Lower bounds and new results

Theorem (Thomason 1989 / 1997)

$$c_4 \leq 0.970 \cdot 2^{-5}$$
, $c_5 \leq 0.881 \cdot 2^{-9}$, and $c_t \leq 0.936 \cdot 2^{1-\binom{t}{2}}$ for $t \geq 6$.

Theorem (Conlon 2011)

$$c_t \geq 2.18^{-t^2(1+o(1))}$$
 for any $t \geq 4$, implying $c_t \cdot 2^{\binom{t}{2}-1} = \Omega(2^{-0.62t^2})$.

Open Problem. Do we even have $c_t \cdot 2^{\binom{t}{2}-1} = o(1)$?

Lower bounds and new results

Theorem (Thomason 1997)

 $c_4 \leq 0.970 \cdot 2^{-5}$ and $c_5 \leq 0.881 \cdot 2^{-9}$.

Question. Can we say more when t = 4 or t = 5?

Theorem (Giraud 1976)	Theorem (Sperfeld/Nieß '11)	Theorem (Grzesik et al. '20)
$c_4 \ge 0.695 \cdot 2^{-5}.$	$c_4 \ge 0.914 \cdot 2^{-5}$.	$c_4 \ge 0.947 \cdot 2^{-5}.$

We can show the first improved upper bounds in 27 years:

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

Lower bounds and new results

Theorem (Thomason 1997)

 $c_4 \leq 0.970 \cdot 2^{-5}$ and $c_5 \leq 0.881 \cdot 2^{-9}$.

Question. Can we say more when t = 4 or t = 5?

Theorem (Giraud 1976)	Theorem (Sperfeld/Nieß '11)	Theorem (Grzesik et al. '20)
$c_4 \ge 0.695 \cdot 2^{-5}.$	$c_4 \ge 0.914 \cdot 2^{-5}.$	$c_4 \ge 0.947 \cdot 2^{-5}.$

We can show the first improved upper bounds in 27 years:

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

Lower bounds and new results

Theorem (Thomason 1997)

 $c_4 \leq 0.970 \cdot 2^{-5}$ and $c_5 \leq 0.881 \cdot 2^{-9}$.

Question. Can we say more when t = 4 or t = 5?

Theorem (Giraud 1976)	Theorem (Sperfeld/Nieß '11)	Theorem (Grzesik et al. '20)
$c_4 \ge 0.695 \cdot 2^{-5}.$	$c_4 \ge 0.914 \cdot 2^{-5}.$	$c_4 \ge 0.947 \cdot 2^{-5}.$

We can show the first improved upper bounds in 27 years:

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

Lower bounds and new results

Theorem (Thomason 1997)

 $c_4 \leq 0.970 \cdot 2^{-5}$ and $c_5 \leq 0.881 \cdot 2^{-9}$.

Question. Can we say more when t = 4 or t = 5?

Theorem (Giraud 1976)	Theorem (Sperfeld/Nieß '11)	Theorem (Grzesik et al. '20)
$c_4 \ge 0.695 \cdot 2^{-5}.$	$c_4 \ge 0.914 \cdot 2^{-5}.$	$c_4 \geq 0.947 \cdot 2^{-5}.$

We can show the first improved upper bounds in 27 years:

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

Lower bounds and new results

Theorem (Thomason 1997)

 $c_4 \leq 0.970 \cdot 2^{-5}$ and $c_5 \leq 0.881 \cdot 2^{-9}$.

Question. Can we say more when t = 4 or t = 5?

Theorem (Giraud 1976)	Theorem (Sperfeld/Nieß '11)	Theorem (Grzesik et al. '20)
$c_4 \ge 0.695 \cdot 2^{-5}.$	$c_4 \geq 0.914 \cdot 2^{-5}$.	$c_4 \ge 0.947 \cdot 2^{-5}.$

We can show the first improved upper bounds in 27 years:

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

$$c_4 \le 0.964 \cdot 2^{-5}$$
 and $0.780 \cdot 2^{-9} \le c_5 \le 0.874 \cdot 2^{-9}$.

$$c_{s,t} = \lim_{n \to \infty} \min\{k_s(\overline{G}) + k_t(G) : |G| = n\}?$$

A famous result of Reiher from 2016 implies that $c_{2,t} = 1/(t-1)$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

 $c_{3,4} = 689 \cdot 3^{-8}$ and any large enough graph G admits a strong homomorphism into the Schläfli graph after changing at most $O(k_3(\overline{G}) + k_4(G) - c_{3,4}) v(G)^2$ edges.

$$c_{s,t} = \lim_{n \to \infty} \min\{k_s(\overline{G}) + k_t(G) : |G| = n\}?$$

A famous result of Reiher from 2016 implies that $c_{2,t} = 1/(t-1)$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

 $c_{3,4} = 689 \cdot 3^{-8}$ and any large enough graph G admits a strong homomorphism into the Schläfli graph after changing at most $O(k_3(\overline{G}) + k_4(G) - c_{3,4}) v(G)^2$ edges.

$$c_{s,t} = \lim_{n \to \infty} \min\{k_s(\overline{G}) + k_t(G) : |G| = n\}?$$

A famous result of Reiher from 2016 implies that $c_{2,t} = 1/(t-1)$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

 $c_{3,4} = 689 \cdot 3^{-8}$ and any large enough graph G admits a strong homomorphism into the Schläfli graph after changing at most $O(k_3(\overline{G}) + k_4(G) - c_{3,4}) v(G)^2$ edges.

$$c_{s,t} = \lim_{n \to \infty} \min\{k_s(\overline{G}) + k_t(G) : |G| = n\}?$$

A famous result of Reiher from 2016 implies that $c_{2,t} = 1/(t-1)$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

 $c_{3,4} = 689 \cdot 3^{-8}$ and any large enough graph G admits a strong homomorphism into the Schläfli graph after changing at most $O(k_3(\overline{G}) + k_4(G) - c_{3,4}) v(G)^2$ edges.

Ramsey Multiplicity Bounds and Search Heuristics

1. The Ramsey Multiplicity Problem

2. Search Heuristics for Upper Bounds

3. Some Context and Related Problems

Graph blow-ups and strong homomorphisms

Definition

The *m*-fold blow-up C[m] of a graph C is given by replacing each vertex in C with an independent set of size m. Two vertices are adjacent if the originals were.

We can derive an upper bound for $c_{s,t}$ from any graph C through

$$c_{s,t} \le \lim_{m \to \infty} \left(k_s(\overline{C[m]}) + k_t(C[m]) \right). \tag{1}$$

This discrete optimization problem is amenable to computational tools since the fraction of maps $G \rightarrow C$ forming strong homomorphisms is invariant under blow-up.

Proposition (Thomason 1987)

$$\lim_{m\to\infty} k_t(C[m]) = \frac{n^{\underline{t}} k_t(C)}{n^t} \text{ and } \lim_{m\to\infty} k_t(\overline{C[m]}) = \sum_{j=1}^t \frac{S(t,j)n^{\underline{j}} k_j(\overline{C})}{n^t}.$$

Graph blow-ups and strong homomorphisms

Definition

The *m*-fold blow-up C[m] of a graph C is given by replacing each vertex in C with an independent set of size m. Two vertices are adjacent if the originals were.

We can derive an upper bound for $c_{s,t}$ from any graph C through

$$c_{s,t} \leq \lim_{m \to \infty} \left(k_s(\overline{C[m]}) + k_t(C[m]) \right). \tag{1}$$

This discrete optimization problem is amenable to computational tools since the fraction of maps $G \rightarrow C$ forming strong homomorphisms is invariant under blow-up.

Proposition (Thomason 1987)

$$\lim_{m\to\infty} k_t(C[m]) = \frac{n^{\underline{t}} k_t(C)}{n^t} \text{ and } \lim_{m\to\infty} k_t(\overline{C[m]}) = \sum_{j=1}^t \frac{S(t,j)n^{\underline{j}} k_j(\overline{C})}{n^t}.$$

Graph blow-ups and strong homomorphisms

Definition

The *m*-fold blow-up C[m] of a graph C is given by replacing each vertex in C with an independent set of size m. Two vertices are adjacent if the originals were.

We can derive an upper bound for $c_{s,t}$ from any graph C through

$$c_{s,t} \leq \lim_{m \to \infty} \left(k_s(\overline{C[m]}) + k_t(C[m]) \right). \tag{1}$$

This discrete optimization problem is amenable to computational tools since the fraction of maps $G \rightarrow C$ forming strong homomorphisms is invariant under blow-up.

Proposition (Thomason 1987)

$$\lim_{m\to\infty} k_t(C[m]) = \frac{n^{\underline{t}} k_t(C)}{n^t} \text{ and } \lim_{m\to\infty} k_t(\overline{C[m]}) = \sum_{j=1}^t \frac{S(t,j)n^{\underline{j}} k_j(\overline{C})}{n^t}.$$

ZUSE INSTITUTE BERLIN

Constructing graphs through search heuristics

For $\mathbf{s} \in \{0,1\}^{\binom{n}{2}}$ let $C_{\mathbf{s}} = \left([n], \{ij : i < j, s_{\binom{j-1}{2}+i} = 1\}\right)$ and consider

$$\min_{\mathbf{s} \in \{0,1\} \binom{n}{2}} \sum_{j=1}^{s} \frac{S(t,j)n^{j} k_{j}(\overline{C_{\mathbf{s}}})}{n^{t}} + \frac{n^{t} k_{t}(C_{\mathbf{s}})}{n^{t}}.$$
 (2)

Many approaches to solve this optimization problem exist:

Approach 1. For $n \leq 7$ we can check all states **s** exhaustively. *Pros:* Easy to implement. *Cons:* Quickly succumbs to combinatorial chaos.

ZUSE INSTITUTI

Constructing graphs through search heuristics

For $\mathbf{s} \in \{0,1\}^{\binom{n}{2}}$ let $C_{\mathbf{s}} = \left([n], \{ij : i < j, s_{\binom{j-1}{2}+i} = 1\}\right)$ and consider

$$\min_{\mathbf{s} \in \{0,1\}} \sum_{j=1}^{s} \frac{S(t,j)n^{j} k_{j}(\overline{C_{\mathbf{s}}})}{n^{t}} + \frac{n^{t} k_{t}(C_{\mathbf{s}})}{n^{t}}.$$
(2)

Many approaches to solve this optimization problem exist:

Approach 1. For $n \lessapprox 7$ we can check all states **s** exhaustively.

Pros: Easy to implement. Cons: Quickly succumbs to combinatorial chaos.

ZUSE INSTITUT

Constructing graphs through search heuristics

For $\mathbf{s} \in \{0,1\}^{\binom{n}{2}}$ let $C_{\mathbf{s}} = \left([n], \{ij : i < j, s_{\binom{j-1}{2}+i} = 1\}\right)$ and consider

$$\min_{\mathbf{s} \in \{0,1\}} \sum_{j=1}^{s} \frac{S(t,j)n^{j} k_{j}(\overline{C_{\mathbf{s}}})}{n^{t}} + \frac{n^{t} k_{t}(C_{\mathbf{s}})}{n^{t}}.$$
(2)

Many approaches to solve this optimization problem exist:

Approach 2. For $n \lessapprox 10$ we can generate all graphs up to isomorphism.

Pros: Implementations already exists. Cons: Still considers graphs far from optimal.

ZUSE INSTITUTI

Constructing graphs through search heuristics

For $\mathbf{s} \in \{0,1\}^{\binom{n}{2}}$ let $C_{\mathbf{s}} = \left([n], \{ij : i < j, s_{\binom{j-1}{2}+i} = 1\}\right)$ and consider

$$\min_{\mathbf{s} \in \{0,1\}} \sum_{j=1}^{s} \frac{S(t,j)n^{j} k_{j}(\overline{C_{\mathbf{s}}})}{n^{t}} + \frac{n^{t} k_{t}(C_{\mathbf{s}})}{n^{t}}.$$
(2)

Many approaches to solve this optimization problem exist:

Approach 3. For $n \lesssim 15$ we can use a Bounded Search Tree.

Pros: Ignores unimportant graphs. Cons: Can be tricky to implement efficiently.

ZUSE INSTITUTI

Constructing graphs through search heuristics

For $\mathbf{s} \in \{0,1\}^{\binom{n}{2}}$ let $C_{\mathbf{s}} = \left([n], \{ij : i < j, s_{\binom{j-1}{2}+i} = 1\}\right)$ and consider

$$\min_{\mathbf{s} \in \{0,1\}} \sum_{j=1}^{s} \frac{S(t,j)n^{j} k_{j}(\overline{C_{\mathbf{s}}})}{n^{t}} + \frac{n^{t} k_{t}(C_{\mathbf{s}})}{n^{t}}.$$
(2)

Many approaches to solve this optimization problem exist:

Approach 4. For $n \lesssim 40$ we can use Search Heuristics.

Cons: No guarantees. Pros: Easy to implement, fast and (often) accurate in practice!

ZUSE INSTITUTE BERLIN

Constructing graphs through search heuristics

For $\mathbf{s} \in \{0,1\}^{\binom{n}{2}}$ let $C_{\mathbf{s}} = \left([n], \{ij : i < j, s_{\binom{j-1}{2}+i} = 1\}\right)$ and consider

$$\min_{\mathbf{s} \in \{0,1\}} \sum_{j=1}^{s} \frac{S(t,j) n^{j} k_{j}(\overline{C_{\mathbf{s}}})}{n^{t}} + \frac{n^{t} k_{t}(C_{\mathbf{s}})}{n^{t}}.$$
(2)

Many approaches to solve this optimization problem exist:

Approach 4. For $n \lesssim 40$ we can use Search Heuristics.

Cons: No guarantees. Pros: Easy to implement, fast and (often) accurate in practice!

ZUSE INSTITUTI

Constructing graphs through search heuristics

For $\mathbf{s} \in \{0,1\}^{\binom{n}{2}}$ let $C_{\mathbf{s}} = \left([n], \{ij : i < j, s_{\binom{j-1}{2}+i} = 1\}\right)$ and consider

$$\min_{\mathbf{s} \in \{0,1\}} \sum_{j=1}^{s} \frac{S(t,j) n^{j} k_{j}(\overline{C_{\mathbf{s}}})}{n^{t}} + \frac{n^{t} k_{t}(C_{\mathbf{s}})}{n^{t}}.$$
(2)

Many approaches to solve this optimization problem exist:

Approach 4. For $n \leq 40$ we can use Search Heuristics.

Cons: No guarantees. Pros: Easy to implement, fast and (often) accurate in practice!

Constructing Cayley graphs through search heuristics

Running the graph search with s = t = 4 yields little of interest up to n = 40.

Thomason's constructions are based on computing the values of XOR-graph-products. The results are in fact Cayley graphs in $C_3^{\times 2} \times C_2^{\times 5}$ and $C_3 \times C_2^{\times 6}$.

Idea. Why not directly search Cayley graph constructions?

Given a group *G*, define $S = \{\{s, s^{-1}\} : s \in G^*\}$ and let $s \in \{0, 1\}^{|S|}$ represent the generating set of the Cayley graph $C_s = (G, \{g_1g_2 : g_1s = g_2 \text{ for some } \{s, s^{-1}\} \in S\})$.

Constructing Cayley graphs through search heuristics

Running the graph search with s = t = 4 yields little of interest up to n = 40.

Thomason's constructions are based on computing the values of XOR-graph-products. The results are in fact Cayley graphs in $C_3^{\times 2} \times C_2^{\times 5}$ and $C_3 \times C_2^{\times 6}$.

Idea. Why not directly search Cayley graph constructions?

Given a group *G*, define $S = \{\{s, s^{-1}\} : s \in G^*\}$ and let $s \in \{0, 1\}^{|S|}$ represent the generating set of the Cayley graph $C_s = (G, \{g_1g_2 : g_1s = g_2 \text{ for some } \{s, s^{-1}\} \in S\})$.

Constructing Cayley graphs through search heuristics

Running the graph search with s = t = 4 yields little of interest up to n = 40.

Thomason's constructions are based on computing the values of XOR-graph-products. The results are in fact Cayley graphs in $C_3^{\times 2} \times C_2^{\times 5}$ and $C_3 \times C_2^{\times 6}$.

Idea. Why not directly search Cayley graph constructions?

Given a group G, define $S = \{\{s, s^{-1}\} : s \in G^*\}$ and let $\mathbf{s} \in \{0, 1\}^{|S|}$ represent the generating set of the Cayley graph $C_{\mathbf{s}} = (G, \{g_1g_2 : g_1s = g_2 \text{ for some } \{s, s^{-1}\} \in S\})$.

Constructing Cayley graphs through search heuristics

Running the graph search with s = t = 4 yields little of interest up to n = 40.

Thomason's constructions are based on computing the values of XOR-graph-products. The results are in fact Cayley graphs in $C_3^{\times 2} \times C_2^{\times 5}$ and $C_3 \times C_2^{\times 6}$.

Idea. Why not directly search Cayley graph constructions?

Given a group G, define $S = \{\{s, s^{-1}\} : s \in G^*\}$ and let $\mathbf{s} \in \{0, 1\}^{|S|}$ represent the generating set of the Cayley graph $C_{\mathbf{s}} = (G, \{g_1g_2 : g_1s = g_2 \text{ for some } \{s, s^{-1}\} \in S\})$.

Constructing Cayley graphs through search heuristics

Running the graph search with s = t = 4 yields little of interest up to n = 40.

Thomason's constructions are based on computing the values of XOR-graph-products. The results are in fact Cayley graphs in $C_3^{\times 2} \times C_2^{\times 5}$ and $C_3 \times C_2^{\times 6}$.

Idea. Why not directly search Cayley graph constructions?

Given a group G, define $S = \{\{s, s^{-1}\} : s \in G^*\}$ and let $\mathbf{s} \in \{0, 1\}^{|S|}$ represent the generating set of the Cayley graph $C_{\mathbf{s}} = (G, \{g_1g_2 : g_1s = g_2 \text{ for some } \{s, s^{-1}\} \in S\})$.

Constructing Cayley graphs through search heuristics

Running the graph search with s = t = 4 yields little of interest up to n = 40.

Thomason's constructions are based on computing the values of XOR-graph-products. The results are in fact Cayley graphs in $C_3^{\times 2} \times C_2^{\times 5}$ and $C_3 \times C_2^{\times 6}$.

Idea. Why not directly search Cayley graph constructions?

Given a group G, define $S = \{\{s, s^{-1}\} : s \in G^*\}$ and let $\mathbf{s} \in \{0, 1\}^{|S|}$ represent the generating set of the Cayley graph $C_{\mathbf{s}} = (G, \{g_1g_2 : g_1s = g_2 \text{ for some } \{s, s^{-1}\} \in S\})$.

Ramsey Multiplicity Bounds and Search Heuristics

1. The Ramsey Multiplicity Problem

2. Search Heuristics for Upper Bounds

3. Some Context and Related Problems

Understanding the full clique trade-off

Consider the region $\Omega_{s,t} \subseteq [0,1]^2$ of points (x,y) for which there exists a sequence $(G_n)_{n\in\mathbb{N}}$ of graphs of increasing order satisfying $k_s(\overline{G_n}) \to x$ and $k_t(G_n) \to y$.

Proposition (Parczyk, Pokutta, S., and Szabó 2022+)

- c_{2,3} was settled by Razborov in 2008 c_{2,4} by Nikiforov in 2011, and the general case of c_{2,t} was famously settled by Reiher in 2016.
- *C*_{2,t} follows from the Kruskal-Katona theorem.
- $C_{s,t}$ and $\Omega_{3,3}$ are due to Huang, Linial, Naves, Peled, and Sudakov in 2014.
- When s = 2 and with K_t replaced by arbitrary quantum graphs, the region was also systematically studied by Liu, Mubayi, and Reiher in 2021+.

Understanding the full clique trade-off

Consider the region $\Omega_{s,t} \subseteq [0,1]^2$ of points (x,y) for which there exists a sequence $(G_n)_{n\in\mathbb{N}}$ of graphs of increasing order satisfying $k_s(\overline{G_n}) \to x$ and $k_t(G_n) \to y$.

Proposition (Parczyk, Pokutta, S., and Szabó 2022+)

- c_{2,3} was settled by Razborov in 2008 c_{2,4} by Nikiforov in 2011, and the general case of c_{2,t} was famously settled by Reiher in 2016.
- C_{2,t} follows from the Kruskal-Katona theorem.
- $C_{s,t}$ and $\Omega_{3,3}$ are due to Huang, Linial, Naves, Peled, and Sudakov in 2014.
- When s = 2 and with K_t replaced by arbitrary quantum graphs, the region was also systematically studied by Liu, Mubayi, and Reiher in 2021+.

Understanding the full clique trade-off

Consider the region $\Omega_{s,t} \subseteq [0,1]^2$ of points (x,y) for which there exists a sequence $(G_n)_{n\in\mathbb{N}}$ of graphs of increasing order satisfying $k_s(\overline{G_n}) \to x$ and $k_t(G_n) \to y$.

Proposition (Parczyk, Pokutta, S., and Szabó 2022+)

- c_{2,3} was settled by Razborov in 2008 c_{2,4} by Nikiforov in 2011, and the general case of c_{2,t} was famously settled by Reiher in 2016.
- *C*_{2,t} follows from the Kruskal-Katona theorem.
- $C_{s,t}$ and $\Omega_{3,3}$ are due to Huang, Linial, Naves, Peled, and Sudakov in 2014.
- When s = 2 and with K_t replaced by arbitrary quantum graphs, the region was also systematically studied by Liu, Mubayi, and Reiher in 2021+.

Understanding the full clique trade-off

Consider the region $\Omega_{s,t} \subseteq [0,1]^2$ of points (x,y) for which there exists a sequence $(G_n)_{n\in\mathbb{N}}$ of graphs of increasing order satisfying $k_s(\overline{G_n}) \to x$ and $k_t(G_n) \to y$.

Proposition (Parczyk, Pokutta, S., and Szabó 2022+)

- c_{2,3} was settled by Razborov in 2008 c_{2,4} by Nikiforov in 2011, and the general case of c_{2,t} was famously settled by Reiher in 2016.
- C_{2,t} follows from the Kruskal-Katona theorem.
- $C_{s,t}$ and $\Omega_{3,3}$ are due to Huang, Linial, Naves, Peled, and Sudakov in 2014.
- When s = 2 and with K_t replaced by arbitrary quantum graphs, the region was also systematically studied by Liu, Mubayi, and Reiher in 2021+.

Understanding the full clique trade-off

Consider the region $\Omega_{s,t} \subseteq [0,1]^2$ of points (x, y) for which there exists a sequence $(G_n)_{n \in \mathbb{N}}$ of graphs of increasing order satisfying $k_s(\overline{G_n}) \to x$ and $k_t(G_n) \to y$.

Proposition (Parczyk, Pokutta, S., and Szabó 2022+)

- c_{2,3} was settled by Razborov in 2008 c_{2,4} by Nikiforov in 2011, and the general case of c_{2,t} was famously settled by Reiher in 2016.
- C_{2,t} follows from the Kruskal-Katona theorem.
- $C_{s,t}$ and $\Omega_{3,3}$ are due to Huang, Linial, Naves, Peled, and Sudakov in 2014.
- When s = 2 and with K_t replaced by arbitrary quantum graphs, the region was also systematically studied by Liu, Mubayi, and Reiher in 2021+.

Understanding the full clique trade-off

Consider the region $\Omega_{s,t} \subseteq [0,1]^2$ of points (x,y) for which there exists a sequence $(G_n)_{n\in\mathbb{N}}$ of graphs of increasing order satisfying $k_s(\overline{G_n}) \to x$ and $k_t(G_n) \to y$.

Proposition (Parczyk, Pokutta, S., and Szabó 2022+)

- c_{2,3} was settled by Razborov in 2008 c_{2,4} by Nikiforov in 2011, and the general case of c_{2,t} was famously settled by Reiher in 2016.
- C_{2,t} follows from the Kruskal-Katona theorem.
- $C_{s,t}$ and $\Omega_{3,3}$ are due to Huang, Linial, Naves, Peled, and Sudakov in 2014.
- When s = 2 and with K_t replaced by arbitrary quantum graphs, the region was also systematically studied by Liu, Mubayi, and Reiher in 2021+.

Understanding the full clique trade-off

Consider the region $\Omega_{s,t} \subseteq [0,1]^2$ of points (x,y) for which there exists a sequence $(G_n)_{n\in\mathbb{N}}$ of graphs of increasing order satisfying $k_s(\overline{G_n}) \to x$ and $k_t(G_n) \to y$.

Proposition (Parczyk, Pokutta, S., and Szabó 2022+)

- c_{2,3} was settled by Razborov in 2008 c_{2,4} by Nikiforov in 2011, and the general case of c_{2,t} was famously settled by Reiher in 2016.
- *C*_{2,*t*} follows from the Kruskal-Katona theorem.
- $C_{s,t}$ and $\Omega_{3,3}$ are due to Huang, Linial, Naves, Peled, and Sudakov in 2014.
- When s = 2 and with K_t replaced by arbitrary quantum graphs, the region was also systematically studied by Liu, Mubayi, and Reiher in 2021+.

Figure: The region $\Omega_{2,t}$ due to Razborov (2008), Nikiforov (2011), and Reiher (2016).

Figure: The region $\Omega_{3,3}$ due to Goodman (1959) as well as Huang, Linial, Naves, Peled, and Sudakov (2014).

(1, 0) $\longrightarrow X$

ZUSE INSTITUTE BERLIN

3. Some Context and Related Problems

Understanding the full clique trade-off

Thank you for your attention!