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BERLIN

IZNUSSy 1. The Ramsey Multiplicity Problem
Definitions and upper bounds

Letting k:(G) denote the fraction of all possible t-cliques in G, we are interested in

ce(n) = min{ke(G) + ke(G) : |G| = n}.

Theorem (Ramsey 1930)
For every t € N there exists ng € N such that c:(n) > 0 iff n > ng.

Let us write ¢; = limp_00 ct(n). Goodman showed that ¢3 = 1/4 in 1959. Erdds
conjectured that ¢; = 21-(3) in 1962 and this was extended by Burr and Rosta.

Theorem (Thomason 1989)
c < 0.976-275, s < 0.906 - 279, and ¢; < 0.936 - 21=() for t > 6.
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Letting k:(G) denote the fraction of all possible t-cliques in G, we are interested in

ct(n) = min{k:(G) + ke(G) : |G| = n}.

Theorem (Ramsey 1930)
For every t € N there exists ng € N such that c,(n) > 0 iff n > ng.

Let us write ¢; = limp_00 ct(n). Goodman showed that c3 = 1/4 in 1959. Erdds
conjectured that ¢; = 21*(5) in 1962 and this was extended by Burr and Rosta.
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Definitions and upper bounds

Letting k:(G) denote the fraction of all possible t-cliques in G, we are interested in

ct(n) = min{k:(G) + ke(G) : |G| = n}.

Theorem (Ramsey 1930)
For every t € N there exists ng € N such that c,(n) > 0 iff n > no.

Let us write ¢; = limp_00 ct(n). Goodman showed that ¢3 = 1/4 in 1959. Erdds
conjectured that ¢; = 21*(9 in 1962 and this was extended by Burr and Rosta.

Theorem (Thomason 1989 / 1997)
2 < 0.970-275, ¢ < 0.881-279, and ¢; < 0.936 - 217() for t > 6.



1. The Ramsey Multiplicity Problem
Lower bounds and new results

ZUSE
INSTITUTE

BERLIN

Theorem (Thomason 1989 / 1997)
2 <0.970-275 ¢ < 0.881-272 and ¢, < 0.936 - 21=() for t > 6.



1. The Ramsey Multiplicity Problem
Lower bounds and new results

ZUSE
INSTITUTE

BERLIN

Theorem (Thomason 1989 / 1997)
2 <0.970-275 ¢ < 0.881-272 and ¢, < 0.936 - 21=() for t > 6.

Theorem (Conlon 2011)
¢t > 2.1872(1+e() for any t > 4, implying c; - 2(5)-1 = Q(2*0'62t2).
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Theorem (Thomason 1989 / 1997)
2 <0.970-275 ¢ < 0.881-272 and ¢, < 0.936 - 21=() for t > 6.

Theorem (Conlon 2011)
¢t > 2.1872(1+e() for any t > 4, implying c; - 2(5)-1 = Q(2*0'62t2).

Open Problem. Do we even have ¢; - 2(3)-1 = o(1)?
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Theorem (Thomason 1997)
4 <0.970-27° and c5 < 0.881-27°.

Question. Can we say more when t =4 or t =57

Theorem (Giraud 1976) Theorem (Sperfeld/NieB "11) Theorem (Grzesik et al. '20)

¢ > 0.695-27°. ¢y >0.914.275, cg > 0.947 - 275,

We can show the first improved upper bounds in 27 years:

Theorem (Parczyk, Pokutta, S., and Szabé 2022+)
c3 <0.964-27° and 0.780 - 279 < 5 < 0.874-27°.
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Question. Determining c3 is easy, but even ¢4 has been unresolved for over 60 years,
so can we say more when studying the off-diagonal variant

Csr = lim. min{ks(G) + k¢(G) : |G| = n}?
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}#sﬁy 1. The Ramsey Multiplicity Problem
An off-diagonal variant

Question. Determining c3 is easy, but even ¢4 has been unresolved for over 60 years,
so can we say more when studying the off-diagonal variant

Csr = lim. min{ks(G) + k:(G) : |G| = n}?
A famous result of Reiher from 2016 implies that ¢ = 1/(t — 1).

Theorem (Parczyk, Pokutta, S., and Szabé 2022+)

c3,4 = 689 - 378 and any large enough graph G admits a strong homomorphism into
the Schlafli graph after changing at most O(ks(G) + ka(G) — c3.4) V(G)? edges.

We can also show that c35 = 24011 - 3712 and 0.00768 < c4 5 < 0.00794.
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Graph blow-ups and strong homomorphisms

The m-fold blow-up C[m] of a graph C is given by replacing each vertex in C with an
independent set of size m. Two vertices are adjacent if the originals were.
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Definition

The m-fold blow-up C[m] of a graph C is given by replacing each vertex in C with an
independent set of size m. Two vertices are adjacent if the originals were.

We can derive an upper bound for cs; from any graph C through

coe < lim_ (ks(Clm]) + ke( Clr)- (1)

m—00

This discrete optimization problem is amenable to computational tools since the
fraction of maps G — C forming strong homomorphisms is invariant under blow-up.

Proposition (Thomason 1987)

liMmoso0 ke(Clm]) = "4 and lim o0 ke(Clm]) = 14

S(tj)r ki(C)
Uss nt ’
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Fors € {0, 1}(5) let G = ([n], {ij: i<} SO+ = 1}) and consider

i ZS: S(t, j)r ki(Gs) N nt kt(Cs).

56{0,1}(5) Jj=1

nt nt

Many approaches to solve this optimization problem exist:

Approach 1. For n < 7 we can check all states s exhaustively.

Pros: Easy to implement. Cons: Quickly succumbs to combinatorial chaos.




,Z,;’;y 2. Search Heuristics for Upper Bounds
Constructing graphs through search heuristics

Fors € {0, 1}(5) let G = ([n], {ij: i<} SO+ = 1}) and consider

i ZS: S(t, j)r ki(Gs) N nt kt(Cs).

56{0,1}(5) Jj=1

nt nt

Many approaches to solve this optimization problem exist:

Approach 2. For n < 10 we can generate all graphs up to isomorphism.

Pros: Implementations already exists. Cons: Still considers graphs far from optimal.
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Constructing graphs through search heuristics

Fors € {0, 1}(5) let G = ([n], {ij: i<} SO+ = 1}) and consider

i ZS: S(t, j)r ki(Gs) N nt kt(Cs).

56{0,1}(5) Jj=1

nt nt

Many approaches to solve this optimization problem exist:

Approach 3. For n < 15 we can use a Bounded Search Tree.

Pros: Ignores unimportant graphs. Cons: Can be tricky to implement efficiently.
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Constructing graphs through search heuristics

Fors € {0, 1}(5) let G = ([n], {ij: i<} SO+ = 1}) and consider

i ZS: S(t, j)r ki(Gs) N nt kt(Cs).

56{0,1}(5) Jj=1

nt nt

Many approaches to solve this optimization problem exist:

Approach 4. For n < 40 we can use Search Heuristics.

Cons: No guarantees. Pros: Easy to implement, fast and (often) accurate in practice!
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Many approaches to solve this optimization problem exist:

Approach 4. For n < 40 we can use Search Heuristics.

Cons: No guarantees. Pros: Easy to implement, fast and (often) accurate in practice!

The most established search heuristics are modifications of Hill Climbing: Simmulated
Annealing by Kirkpatrick, Gelatt and Vecchi (1983) and Tabu search by Glover (1986).
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Fors € {0, 1}(5) let G = ([n], {ij: i<} SO+ = 1}) and consider
° N ki(Cs)  nthke(Cs
min Z S(tv./)nt _](C) + n= ;EC ) (2)

56{0,1}(5) Jj=1

Many approaches to solve this optimization problem exist:

Approach 4. For n < 40 we can use Search Heuristics.

Cons: No guarantees. Pros: Easy to implement, fast and (often) accurate in practice!

The most established search heuristics are modifications of Hill Climbing: Simmulated
Annealing by Kirkpatrick, Gelatt and Vecchi (1983) and Tabu search by Glover (1986).

Running these with s =3, t =4 and n = 27 yields the Schlafli graph for c; 4.
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generating set of the Cayley graph G = (G, {g18> : g15 = g» for some {5,571} € 5})
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Since |G|/2 < |S| < |G| the number of variables is now linear in the number of vertices!
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Constructing Cayley graphs through search heuristics

Running the graph search with s =t = 4 yields little of interest up to n = 40.

Thomason's constructions are based on computing the values of XOR-graph-products.
The results are in fact Cayley graphs in 3% x C5° and G x G°.

Idea. Why not directly search Cayley graph constructions?

Given a group G, define S= {{s,s7'} : s € G*} and let s € {0,1}°l represent the
generating set of the Cayley graph G = (G, {g18> : g15 = g» for some {5,571} € 5})
Since |G|/2 < |S| < |G| the number of variables is now linear in the number of vertices!

Running searches with s=t=4 and G= C; x C;% as well as s=t =5 and
G= (G x C2X6 gives the improved upper bounds for ¢; and cs.
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Consider the region Qs C [0, 1]2 of points (x, y) for which there exists a sequence

(Gp)nen of graphs of increasing order satisfying ks(G,) — x and ki(G,) — .

Proposition (Parczyk, Pokutta, S., and Szabé 2022+)

Qs+ is compact and simply connected. The defining curves c¢s: = min{y: (x,y) € Qs}
and G = max{y: (x,y) € Qs.} are decreasing, continuous and a.e. differentiable.

» 3 was settled by Razborov in 2008 ¢, 4 by Nikiforov in 2011, and the general
case of ¢+ was famously settled by Reiher in 2016.

= (5 follows from the Kruskal-Katona theorem.

= G+ and €33 are due to Huang, Linial, Naves, Peled, and Sudakov in 2014.
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Understanding the full clique trade-off

Consider the region Qs C [0, 1]2 of points (x, y) for which there exists a sequence

(Gp)nen of graphs of increasing order satisfying ks(G,) — x and ki(G,) — .

Proposition (Parczyk, Pokutta, S., and Szabé 2022+)

Qs+ is compact and simply connected. The defining curves c¢s: = min{y: (x,y) € Qs}
and Cs¢ = max{y: (x,y) € Qs.} are decreasing, continuous and a.e. differentiable.

» 3 was settled by Razborov in 2008 ¢, 4 by Nikiforov in 2011, and the general
case of ¢+ was famously settled by Reiher in 2016.

= (5 follows from the Kruskal-Katona theorem.
= G+ and €33 are due to Huang, Linial, Naves, Peled, and Sudakov in 2014.

= When s = 2 and with K; replaced by arbitrary quantum graphs, the region was
also systematically studied by Liu, Mubayi, and Reiher in 2021+.
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y

(0,1)

X

Figure: The region €23 3 due to Goodman
Figure: The region €, ; due to Razborov (1959) as well as Huang, Linial, Naves,
(2008), Nikiforov (2011), and Reiher (2016). Peled, and Sudakov (2014).



BERLIN

,Z,;’;y 3. Some Context and Related Problems

Understanding the full clique trade-off
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Thank you for your attention!
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