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2. Search Heuristics for Upper Bounds

3. Some Context and Related Problems



1. The Ramsey Multiplicity Problem

Definitions and upper bounds
Letting kt(G) denote the fraction of all possible t-cliques in G, we are interested in

ct(n) = min{kt(G) + kt(G) : |G| = n}.

Theorem (Ramsey 1930)

For every t ∈ N there exists n0 ∈ N such that ct(n) > 0 iff n ≥ n0.

Let us write ct = limn→∞ ct(n). Goodman showed that c3 = 1/4 in 1959. Erdős
conjectured that ct = 21−(t

2) in 1962 and this was extended by Burr and Rosta.

Theorem (Thomason 1989)

c4 ≤ 0.976 · 2−5, c5 ≤ 0.906 · 2−9, and ct ≤ 0.936 · 21−(t
2) for t ≥ 6.
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1. The Ramsey Multiplicity Problem

Lower bounds and new results

Theorem (Thomason 1989 / 1997)

c4 ≤ 0.970 · 2−5, c5 ≤ 0.881 · 2−9, and ct ≤ 0.936 · 21−(t
2) for t ≥ 6.

Theorem (Conlon 2011)

ct ≥ 2.18−t2 (1+o(1)) for any t ≥ 4, implying ct · 2(t
2)−1 = Ω(2−0.62t2).

Open Problem. Do we even have ct · 2(t
2)−1 = o(1)?
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1. The Ramsey Multiplicity Problem

Lower bounds and new results

Theorem (Thomason 1997)

c4 ≤ 0.970 · 2−5 and c5 ≤ 0.881 · 2−9.

Question. Can we say more when t = 4 or t = 5?

Theorem (Giraud 1976)

c4 ≥ 0.695 · 2−5.
Theorem (Sperfeld/Nieß ’11)

c4 ≥ 0.914 · 2−5.
Theorem (Grzesik et al. ’20)

c4 ≥ 0.947 · 2−5.

We can show the first improved upper bounds in 27 years:

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

c4 ≤ 0.964 · 2−5 and 0.780 · 2−9 ≤ c5 ≤ 0.874 · 2−9.
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1. The Ramsey Multiplicity Problem

An off-diagonal variant

Question. Determining c3 is easy, but even c4 has been unresolved for over 60 years,
so can we say more when studying the off-diagonal variant

cs,t = lim
n→∞

min{ks(G) + kt(G) : |G| = n}?

A famous result of Reiher from 2016 implies that c2,t = 1/(t − 1).

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

c3,4 = 689 · 3−8 and any large enough graph G admits a strong homomorphism into
the Schläfli graph after changing at most O(k3(G) + k4(G) − c3,4) v(G)2 edges.

We can also show that c3,5 = 24011 · 3−12 and 0.00768 < c4,5 < 0.00794.
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2. Search Heuristics for Upper Bounds

Graph blow-ups and strong homomorphisms
Definition
The m-fold blow-up C[m] of a graph C is given by replacing each vertex in C with an
independent set of size m. Two vertices are adjacent if the originals were.

We can derive an upper bound for cs,t from any graph C through

cs,t ≤ lim
m→∞

(
ks(C[m]) + kt(C[m])

)
. (1)

This discrete optimization problem is amenable to computational tools since the
fraction of maps G → C forming strong homomorphisms is invariant under blow-up.

Proposition (Thomason 1987)

limm→∞ kt(C[m]) = nt kt(C)
nt and limm→∞ kt(C[m]) =

∑t
j=1

S(t,j)nj kj(C)
nt .
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2. Search Heuristics for Upper Bounds

Constructing graphs through search heuristics
For s ∈ {0, 1}(n

2) let Cs =
(
[n],

{
ij : i < j, s(j−1

2 )+i = 1
})

and consider

min
s∈{0,1}(

n
2)

s∑
j=1

S(t, j)nj kj(Cs)
nt + nt kt(Cs)

nt . (2)

Many approaches to solve this optimization problem exist:

Approach 1. For n ⪅ 7 we can check all states s exhaustively.
Pros: Easy to implement. Cons: Quickly succumbs to combinatorial chaos.

The most established search heuristics are modifications of Hill Climbing: Simmulated
Annealing by Kirkpatrick, Gelatt and Vecchi (1983) and Tabu search by Glover (1986).
Running these with s = 3, t = 4 and n = 27 yields the Schläfli graph for c3,4.
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Many approaches to solve this optimization problem exist:

Approach 2. For n ⪅ 10 we can generate all graphs up to isomorphism.
Pros: Implementations already exists. Cons: Still considers graphs far from optimal.

The most established search heuristics are modifications of Hill Climbing: Simmulated
Annealing by Kirkpatrick, Gelatt and Vecchi (1983) and Tabu search by Glover (1986).
Running these with s = 3, t = 4 and n = 27 yields the Schläfli graph for c3,4.
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Many approaches to solve this optimization problem exist:

Approach 3. For n ⪅ 15 we can use a Bounded Search Tree.
Pros: Ignores unimportant graphs. Cons: Can be tricky to implement efficiently.

The most established search heuristics are modifications of Hill Climbing: Simmulated
Annealing by Kirkpatrick, Gelatt and Vecchi (1983) and Tabu search by Glover (1986).
Running these with s = 3, t = 4 and n = 27 yields the Schläfli graph for c3,4.



2. Search Heuristics for Upper Bounds

Constructing graphs through search heuristics
For s ∈ {0, 1}(n

2) let Cs =
(
[n],

{
ij : i < j, s(j−1

2 )+i = 1
})

and consider

min
s∈{0,1}(

n
2)

s∑
j=1

S(t, j)nj kj(Cs)
nt + nt kt(Cs)

nt . (2)

Many approaches to solve this optimization problem exist:

Approach 4. For n ⪅ 40 we can use Search Heuristics.
Cons: No guarantees. Pros: Easy to implement, fast and (often) accurate in practice!

The most established search heuristics are modifications of Hill Climbing: Simmulated
Annealing by Kirkpatrick, Gelatt and Vecchi (1983) and Tabu search by Glover (1986).
Running these with s = 3, t = 4 and n = 27 yields the Schläfli graph for c3,4.
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2. Search Heuristics for Upper Bounds

Constructing Cayley graphs through search heuristics

Running the graph search with s = t = 4 yields little of interest up to n = 40.
Thomason’s constructions are based on computing the values of XOR-graph-products.
The results are in fact Cayley graphs in C×2

3 × C×5
2 and C3 × C×6

2 .

Idea. Why not directly search Cayley graph constructions?

Given a group G, define S = {{s, s−1} : s ∈ G⋆} and let s ∈ {0, 1}|S| represent the
generating set of the Cayley graph Cs =

(
G, {g1g2 : g1s = g2 for some {s, s−1} ∈ S}

)
.

Since |G|/2 < |S| < |G| the number of variables is now linear in the number of vertices!
Running searches with s = t = 4 and G = C3 × C×8

2 as well as s = t = 5 and
G = C3 × C×6

2 gives the improved upper bounds for c4 and c5.
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Idea. Why not directly search Cayley graph constructions?

Given a group G, define S = {{s, s−1} : s ∈ G⋆} and let s ∈ {0, 1}|S| represent the
generating set of the Cayley graph Cs =

(
G, {g1g2 : g1s = g2 for some {s, s−1} ∈ S}

)
.

Since |G|/2 < |S| < |G| the number of variables is now linear in the number of vertices!
Running searches with s = t = 4 and G = C3 × C×8

2 as well as s = t = 5 and
G = C3 × C×6

2 gives the improved upper bounds for c4 and c5.
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3. Some Context and Related Problems

Understanding the full clique trade-off
Consider the region Ωs,t ⊆ [0, 1]2 of points (x, y) for which there exists a sequence
(Gn)n∈N of graphs of increasing order satisfying ks(Gn) → x and kt(Gn) → y.

Proposition (Parczyk, Pokutta, S., and Szabó 2022+)

Ωs,t is compact and simply connected. The defining curves cs,t = min{y : (x, y) ∈ Ωs,t}
and Cs,t = max{y : (x, y) ∈ Ωs,t} are decreasing, continuous and a.e. differentiable.

• c2,3 was settled by Razborov in 2008 c2,4 by Nikiforov in 2011, and the general
case of c2,t was famously settled by Reiher in 2016.

• C2,t follows from the Kruskal-Katona theorem.
• Cs,t and Ω3,3 are due to Huang, Linial, Naves, Peled, and Sudakov in 2014.
• When s = 2 and with Kt replaced by arbitrary quantum graphs, the region was

also systematically studied by Liu, Mubayi, and Reiher in 2021+.
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Understanding the full clique trade-off
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(0, 1)

(1, 0)

(
r−1, rt−1

rt−1

)
(

1
t−1 , 0

)
Figure: The region Ω2,t due to Razborov
(2008), Nikiforov (2011), and Reiher (2016).
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)
Figure: The region Ω3,3 due to Goodman
(1959) as well as Huang, Linial, Naves,
Peled, and Sudakov (2014).
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Understanding the full clique trade-off
y

x

(
0, 3

25

)
- looped complement of C5

(
3

200 , 6347
64000

)
- 40 vertices(

1
36 , 577

6912

)
- 24 vertices(

41
729 , 320

6561

)
- Schläfli graph(

563
8192 , 2469

65536

)
- 128 vertices(

1
9 , 0

)
- K3

What is currently known about
the region Ω3,4. Results on the
axes are due to Das, Huang,
Ma, Naves, Sudakov (2013) as
well as Pikhurko and Vaughan
(2013).



Thank you for your attention!
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