On a problem of Sárközy and Sós for multivariate linear forms

Juanjo Rué Christoph Spiegel

Discrete Mathematics Days
Sevilla, June 2018

Some general Motivation: Gauss' Circle Problem

Q: How many integer lattice points are in a circle with radius r centred at the origin?

Some general Motivation: Gauss’ Circle Problem

Q: How many integer lattice points are in a circle with radius r centred at the origin?

A: $\#\left\{(x, y) \in \mathbb{Z}^{2}: x^{2}+y^{2} \leq r^{2}\right\}=\pi r^{2}+E(r)$

Some general Motivation: Gauss’ Circle Problem

Q: How many integer lattice points are in a circle with radius r centred at the origin?

A: $\#\left\{(x, y) \in \mathbb{Z}^{2}: x^{2}+y^{2} \leq r^{2}\right\}=\pi r^{2}+E(r)$

Theorem (Huxley 2003)
We have $E(r)=O\left(r^{131 / 208}\right)$.

Some general Motivation: Gauss’ Circle Problem

Q: How many integer lattice points are in a circle with radius r centred at the origin?

$$
\text { A: } \#\left\{(x, y) \in \mathbb{Z}^{2}: x^{2}+y^{2} \leq r^{2}\right\}=\pi r^{2}+E(r)
$$

Theorem (Huxley 2003)
We have $E(r)=O\left(r^{131 / 208}\right)$.

Theorem (Hardy 1915; Landau 1915)
We cannot have $E(r)=o\left(r^{1 / 2} \log (r)^{1 / 4}\right)$.

Additive representation functions

Definition
For any infinite set $\mathcal{A} \subseteq \mathbb{N}_{0}$ and $n \in \mathbb{N}_{0}$, let

$$
\begin{equation*}
r_{\mathcal{A}}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in \mathcal{A}^{2}: a_{1}+a_{2}=n\right\} . \tag{1}
\end{equation*}
$$

Additive representation functions

Definition
For any infinite set $\mathcal{A} \subseteq \mathbb{N}_{0}$ and $n \in \mathbb{N}_{0}$, let

$$
\begin{equation*}
r_{\mathcal{A}}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in \mathcal{A}^{2}: a_{1}+a_{2}=n\right\} . \tag{1}
\end{equation*}
$$

Remark

Trivially $r_{\mathcal{A}}(n)$ is odd if $n=2 a$ for some $a \in \mathcal{A}$ and even otherwise.

Additive representation functions

Definition
For any infinite set $\mathcal{A} \subseteq \mathbb{N}_{0}$ and $n \in \mathbb{N}_{0}$, let

$$
\begin{equation*}
r_{\mathcal{A}}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in \mathcal{A}^{2}: a_{1}+a_{2}=n\right\} . \tag{1}
\end{equation*}
$$

Remark
Trivially $r_{\mathcal{A}}(n)$ is odd if $n=2 a$ for some $a \in \mathcal{A}$ and even otherwise.
Theorem (Erdős and Fuchs 1956)
For any infinite $\mathcal{A} \subseteq \mathbb{N}$ and $c>0$ we cannot have

$$
\begin{equation*}
\sum_{n=1}^{N} r_{\mathcal{A}}(n)=c N+o\left(N^{1 / 4} \log N^{-1 / 2}\right) \tag{2}
\end{equation*}
$$

Additive representation functions

Definition
For any infinite set $\mathcal{A} \subseteq \mathbb{N}_{0}$ and $n \in \mathbb{N}_{0}$, let

$$
\begin{equation*}
r_{\mathcal{A}}(n)=\#\left\{\left(a_{1}, a_{2}\right) \in \mathcal{A}^{2}: a_{1}+a_{2}=n\right\} . \tag{1}
\end{equation*}
$$

Remark
Trivially $r_{\mathcal{A}}(n)$ is odd if $n=2 a$ for some $a \in \mathcal{A}$ and even otherwise.
Theorem (Erdős and Fuchs 1956)
For any infinite $\mathcal{A} \subseteq \mathbb{N}$ and $c>0$ we cannot have

$$
\begin{equation*}
\sum_{n=1}^{N} r_{\mathcal{A}}(n)=c N+o\left(N^{1 / 4} \log N^{-1 / 2}\right) \tag{2}
\end{equation*}
$$

Corollary

Considering the case where $\mathcal{A}=\left\{m^{2}: m \in \mathbb{N}\right\}, c=\pi / 4$ and $N=r^{2}-4 r / \pi$, it follows that we cannot have $E(r)=o\left(r^{1 / 2} \log (r)^{-1 / 2}\right)$.

Additive representation functions

Sárközy and Sós '97: For which $k_{1}, \ldots, k_{d} \in \mathbb{N}$ does there exist an infinite set $\mathcal{A} \subseteq \mathbb{N}_{0}$ and $n_{0} \geq 0$ such that

$$
r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)=\#\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}: k_{1} a_{1}+\cdots+k_{d} a_{d}=n\right\}
$$

is constant for $n \geq n_{0}$?

Additive representation functions

Sárközy and Sós '97: For which $k_{1}, \ldots, k_{d} \in \mathbb{N}$ does there exist an infinite set $\mathcal{A} \subseteq \mathbb{N}_{0}$ and $n_{0} \geq 0$ such that

$$
r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)=\#\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}: k_{1} a_{1}+\cdots+k_{d} a_{d}=n\right\}
$$

is constant for $n \geq n_{0}$?

Remark

We already observed that $r_{\mathcal{A}}(n ; 1,1)$ cannot become constant.

Additive representation functions

Sárközy and Sós '97: For which $k_{1}, \ldots, k_{d} \in \mathbb{N}$ does there exist an infinite set $\mathcal{A} \subseteq \mathbb{N}_{0}$ and $n_{0} \geq 0$ such that

$$
r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)=\#\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}: k_{1} a_{1}+\cdots+k_{d} a_{d}=n\right\}
$$

is constant for $n \geq n_{0}$?

Remark

We already observed that $r_{\mathcal{A}}(n ; 1,1)$ cannot become constant. We can extend this to $r_{\mathcal{A}}(n ; 1, \ldots, 1)$.

Additive representation functions

Sárközy and Sós '97: For which $k_{1}, \ldots, k_{d} \in \mathbb{N}$ does there exist an infinite set $\mathcal{A} \subseteq \mathbb{N}_{0}$ and $n_{0} \geq 0$ such that

$$
r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)=\#\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}: k_{1} a_{1}+\cdots+k_{d} a_{d}=n\right\}
$$

is constant for $n \geq n_{0}$?

Remark

We already observed that $r_{\mathcal{A}}(n ; 1,1)$ cannot become constant. We can extend this to $r_{\mathcal{A}}(n ; 1, \ldots, 1)$.

Theorem (Moser 1962)
For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_{0}$ such that $r_{\mathcal{A}}\left(n ; 1, k, k^{2}, \ldots, k^{d-1}\right)=1$.

Additive representation functions

Sárközy and Sós '97: For which $k_{1}, \ldots, k_{d} \in \mathbb{N}$ does there exist an infinite set $\mathcal{A} \subseteq \mathbb{N}_{0}$ and $n_{0} \geq 0$ such that

$$
r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)=\#\left\{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}: k_{1} a_{1}+\cdots+k_{d} a_{d}=n\right\}
$$

is constant for $n \geq n_{0}$?

Remark

We already observed that $r_{\mathcal{A}}(n ; 1,1)$ cannot become constant. We can extend this to $r_{\mathcal{A}}(n ; 1, \ldots, 1)$.

Theorem (Moser 1962)
For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_{0}$ such that $r_{\mathcal{A}}\left(n ; 1, k, k^{2}, \ldots, k^{d-1}\right)=1$.
Theorem (Rué and Cilleruelo 2009)
For any $k_{1}, k_{2} \geq 2$ and $\mathcal{A} \subseteq \mathbb{N}_{0}, r_{\mathcal{A}}\left(n ; k_{1}, k_{2}\right)$ cannot become constant.

Additive representation functions

Theorem (Moser 1962)
For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_{0}$ such that $r_{\mathcal{A}}\left(n ; 1, k, k^{2}, \ldots, k^{d-1}\right)=1$.

Theorem (Rué and Cilleruelo 2009)
For any $k_{1}, k_{2} \geq 2$ and $\mathcal{A} \subseteq \mathbb{N}_{0}, r_{\mathcal{A}}\left(n ; k_{1}, k_{2}\right)$ cannot become constant.

Additive representation functions

Theorem (Moser 1962)
For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_{0}$ such that $r_{\mathcal{A}}\left(n ; 1, k, k^{2}, \ldots, k^{d-1}\right)=1$.

Theorem (Rué and Cilleruelo 2009)
For any $k_{1}, k_{2} \geq 2$ and $\mathcal{A} \subseteq \mathbb{N}_{0}, r_{\mathcal{A}}\left(n ; k_{1}, k_{2}\right)$ cannot become constant.

Theorem (Rué and S. 2018+)
If there are pairwise co-prime integers $q_{1}, \ldots, q_{m} \geq 2$ such that

$$
\begin{equation*}
k_{i}=q_{1}^{b(i, 1)} \cdots q_{m}^{b(i, m)} \geq 2 \tag{3}
\end{equation*}
$$

where $b(i, j) \in\{0,1\}$, then $r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$ cannot become constant for any infinite $\mathcal{A} \subseteq \mathbb{N}_{0}$.

Additive representation functions

Theorem (Moser 1962)
For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_{0}$ such that $r_{\mathcal{A}}\left(n ; 1, k, k^{2}, \ldots, k^{d-1}\right)=1$.

Theorem (Rué and Cilleruelo 2009)
For any $k_{1}, k_{2} \geq 2$ and $\mathcal{A} \subseteq \mathbb{N}_{0}, r_{\mathcal{A}}\left(n ; k_{1}, k_{2}\right)$ cannot become constant.

Theorem (Rué and S. 2018+)
If there are pairwise co-prime integers $q_{1}, \ldots, q_{m} \geq 2$ such that

$$
\begin{equation*}
k_{i}=q_{1}^{b(i, 1)} \cdots q_{m}^{b(i, m)} \geq 2 \tag{3}
\end{equation*}
$$

where $b(i, j) \in\{0,1\}$, then $r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$ cannot become constant for any infinite $\mathcal{A} \subseteq \mathbb{N}_{0}$. This includes the case of pairwise co-prime $k_{1}, \ldots, k_{d} \geq 2$.

The proof of Moser's result

Theorem (Moser 1962)
For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_{0}$ such that $r_{\mathcal{A}}(n ; 1, k)=1$ for all $n \geq 0$.

The proof of Moser's result

Theorem (Moser 1962)
For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_{0}$ such that $r_{\mathcal{A}}(n ; 1, k)=1$ for all $n \geq 0$.
Proof.
The generating function of \mathcal{A} is $f_{\mathcal{A}}(z)=\sum_{a \in \mathcal{A}} z^{a}$.

The proof of Moser's result

Theorem (Moser 1962)
For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_{0}$ such that $r_{\mathcal{A}}(n ; 1, k)=1$ for all $n \geq 0$.
Proof.
The generating function of \mathcal{A} is $f_{\mathcal{A}}(z)=\sum_{a \in \mathcal{A}} z^{a}$. We have

$$
\begin{equation*}
f_{\mathcal{A}}(z) f_{\mathcal{A}}\left(z^{k}\right)=\sum_{\left(a, a^{\prime}\right) \in \mathcal{A}^{2}} z^{a+k a^{\prime}}=\sum_{n=0}^{\infty} r(n ; 1, k) z^{n} \stackrel{!}{=} \sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z} \tag{4}
\end{equation*}
$$

The proof of Moser's result

Theorem (Moser 1962)

For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_{0}$ such that $r_{\mathcal{A}}(n ; 1, k)=1$ for all $n \geq 0$.
Proof.
The generating function of \mathcal{A} is $f_{\mathcal{A}}(z)=\sum_{a \in \mathcal{A}} z^{a}$. We have

$$
\begin{equation*}
f_{\mathcal{A}}(z) f_{\mathcal{A}}\left(z^{k}\right)=\sum_{\left(a, a^{\prime}\right) \in \mathcal{A}^{2}} z^{a+k a^{\prime}}=\sum_{n=0}^{\infty} r(n ; 1, k) z^{n} \stackrel{!}{=} \sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z} . \tag{4}
\end{equation*}
$$

Writing $f_{\mathcal{A}}(z)=(1-z)^{-1} f_{\mathcal{A}}^{-1}\left(z^{k}\right)$ and repeatedly substituting,

The proof of Moser's result

Theorem (Moser 1962)

For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_{0}$ such that $r_{\mathcal{A}}(n ; 1, k)=1$ for all $n \geq 0$.
Proof.
The generating function of \mathcal{A} is $f_{\mathcal{A}}(z)=\sum_{a \in \mathcal{A}} z^{a}$. We have

$$
\begin{equation*}
f_{\mathcal{A}}(z) f_{\mathcal{A}}\left(z^{k}\right)=\sum_{\left(a, a^{\prime}\right) \in \mathcal{A}^{2}} z^{a+k a^{\prime}}=\sum_{n=0}^{\infty} r(n ; 1, k) z^{n} \stackrel{!}{=} \sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z} . \tag{4}
\end{equation*}
$$

Writing $f_{\mathcal{A}}(z)=(1-z)^{-1} f_{\mathcal{A}}^{-1}\left(z^{k}\right)$ and repeatedly substituting, we get

$$
f_{\mathcal{A}}(z)=\prod_{j=0}^{\infty}\left(1+z^{\left(k^{2}\right)^{j}}+z^{2\left(k^{2}\right)^{j}}+\cdots++z^{(k-1)\left(k^{2}\right)^{j}}\right)
$$

The proof of Moser's result

Theorem (Moser 1962)

For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_{0}$ such that $r_{\mathcal{A}}(n ; 1, k)=1$ for all $n \geq 0$.
Proof.
The generating function of \mathcal{A} is $f_{\mathcal{A}}(z)=\sum_{a \in \mathcal{A}} z^{a}$. We have

$$
\begin{equation*}
f_{\mathcal{A}}(z) f_{\mathcal{A}}\left(z^{k}\right)=\sum_{\left(a, a^{\prime}\right) \in \mathcal{A}^{2}} z^{a+k a^{\prime}}=\sum_{n=0}^{\infty} r(n ; 1, k) z^{n} \stackrel{!}{=} \sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z} . \tag{4}
\end{equation*}
$$

Writing $f_{\mathcal{A}}(z)=(1-z)^{-1} f_{\mathcal{A}}^{-1}\left(z^{k}\right)$ and repeatedly substituting, we get

$$
f_{\mathcal{A}}(z)=\prod_{j=0}^{\infty}\left(1+z^{\left(k^{2}\right)^{j}}+z^{2\left(k^{2}\right)^{j}}+\cdots++z^{(k-1)\left(k^{2}\right)^{j}}\right)
$$

This is the representation function of the set of all integers whose k^{2}-ary representation has only digits strictly smaller than k.

Proof Outline of Main Result

Proof Outline.

From here on we will abbreviate $r_{\mathcal{A}}(n)=r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$.

Proof Outline of Main Result

Proof Outline.

From here on we will abbreviate $r_{\mathcal{A}}(n)=r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$.
Generalising the previous approach, we have

$$
\begin{equation*}
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\sum_{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}} z^{k_{1} a_{1}+\cdots+k_{d} a_{d}}=\sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^{n} \tag{5}
\end{equation*}
$$

Proof Outline of Main Result

Proof Outline.

From here on we will abbreviate $r_{\mathcal{A}}(n)=r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$.
Generalising the previous approach, we have

$$
\begin{equation*}
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\sum_{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}} z^{k_{1} a_{1}+\cdots+k_{d} a_{d}}=\sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^{n} \tag{5}
\end{equation*}
$$

If $r_{\mathcal{A}}(n)$ becomes constant, that is there exist $c>0$ and $n_{0} \geq 0$ such that $r_{\mathcal{A}}(n)=c$ for $n \geq n_{0} \geq 0$,

Proof Outline of Main Result

Proof Outline.

From here on we will abbreviate $r_{\mathcal{A}}(n)=r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$.
Generalising the previous approach, we have

$$
\begin{equation*}
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\sum_{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}} z^{k_{1} a_{1}+\cdots+k_{d} a_{d}}=\sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^{n} \tag{5}
\end{equation*}
$$

If $r_{\mathcal{A}}(n)$ becomes constant, that is there exist $c>0$ and $n_{0} \geq 0$ such that $r_{\mathcal{A}}(n)=c$ for $n \geq n_{0} \geq 0$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^{n}=\sum_{n=0}^{n_{0}-1} r_{\mathcal{A}}(n) z^{n}+\sum_{n=n_{0}}^{\infty} c z^{n}=Q(z)+c \frac{z^{n_{0}}}{1-z}=\frac{P(z)}{1-z} \tag{6}
\end{equation*}
$$

Proof Outline of Main Result

Proof Outline.

From here on we will abbreviate $r_{\mathcal{A}}(n)=r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$.
Generalising the previous approach, we have

$$
\begin{equation*}
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\sum_{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}} z^{k_{1} a_{1}+\cdots+k_{d} a_{d}}=\sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^{n} \tag{5}
\end{equation*}
$$

If $r_{\mathcal{A}}(n)$ becomes constant, that is there exist $c>0$ and $n_{0} \geq 0$ such that $r_{\mathcal{A}}(n)=c$ for $n \geq n_{0} \geq 0$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^{n}=\sum_{n=0}^{n_{0}-1} r_{\mathcal{A}}(n) z^{n}+\sum_{n=n_{0}}^{\infty} c z^{n}=Q(z)+c \frac{z^{n_{0}}}{1-z}=\frac{P(z)}{1-z} \tag{6}
\end{equation*}
$$

where $Q \in \mathbb{N}_{0}[z]$ and $P \in \mathbb{Z}[z]$ are polynomials and $P(1) \neq 0$.

Proof Outline of Main Result

Proof Outline.

From here on we will abbreviate $r_{\mathcal{A}}(n)=r_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)$.
Generalising the previous approach, we have

$$
\begin{equation*}
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\sum_{\left(a_{1}, \ldots, a_{d}\right) \in \mathcal{A}^{d}} z^{k_{1} a_{1}+\cdots+k_{d} a_{d}}=\sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^{n} \tag{5}
\end{equation*}
$$

If $r_{\mathcal{A}}(n)$ becomes constant, that is there exist $c>0$ and $n_{0} \geq 0$ such that $r_{\mathcal{A}}(n)=c$ for $n \geq n_{0} \geq 0$, then

$$
\begin{equation*}
\sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^{n}=\sum_{n=0}^{n_{0}-1} r_{\mathcal{A}}(n) z^{n}+\sum_{n=n_{0}}^{\infty} c z^{n}=Q(z)+c \frac{z^{n_{0}}}{1-z}=\frac{P(z)}{1-z} \tag{6}
\end{equation*}
$$

where $Q \in \mathbb{N}_{0}[z]$ and $P \in \mathbb{Z}[z]$ are polynomials and $P(1) \neq 0$. We have

$$
\begin{equation*}
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\frac{P(z)}{1-z} \tag{7}
\end{equation*}
$$

Introducing cyclotomic poylinomials

The cyclotomic polynomial of order n is given by

$$
\begin{equation*}
\Phi_{n}(z)=\prod_{\xi \in \phi_{n}}(z-\xi) \tag{8}
\end{equation*}
$$

where $\phi_{n}=\left\{\xi \in \mathbb{C}: \xi^{k}=1\right.$ iff $\left.k \equiv 0 \bmod n\right\}$.

Introducing cyclotomic poylinomials

The cyclotomic polynomial of order n is given by

$$
\begin{equation*}
\Phi_{n}(z)=\prod_{\xi \in \phi_{n}}(z-\xi) \tag{8}
\end{equation*}
$$

where $\phi_{n}=\left\{\xi \in \mathbb{C}: \xi^{k}=1\right.$ iff $\left.k \equiv 0 \bmod n\right\}$. We have

Introducing cyclotomic poylinomials

The cyclotomic polynomial of order n is given by

$$
\begin{equation*}
\Phi_{n}(z)=\prod_{\xi \in \phi_{n}}(z-\xi) \tag{8}
\end{equation*}
$$

where $\phi_{n}=\left\{\xi \in \mathbb{C}: \xi^{k}=1\right.$ iff $\left.k \equiv 0 \bmod n\right\}$. We have
(i) $\Phi_{n} \in \mathbb{Z}[z]$ for all n

Introducing cyclotomic poylinomials

The cyclotomic polynomial of order n is given by

$$
\begin{equation*}
\Phi_{n}(z)=\prod_{\xi \in \phi_{n}}(z-\xi) \tag{8}
\end{equation*}
$$

where $\phi_{n}=\left\{\xi \in \mathbb{C}: \xi^{k}=1\right.$ iff $\left.k \equiv 0 \bmod n\right\}$. We have
(i) $\Phi_{n} \in \mathbb{Z}[z]$ for all n and
(ii) Φ_{n} is irreducible over $\mathbb{Z}[z]$.

Introducing cyclotomic poylinomials

The cyclotomic polynomial of order n is given by

$$
\begin{equation*}
\Phi_{n}(z)=\prod_{\xi \in \phi_{n}}(z-\xi) \tag{8}
\end{equation*}
$$

where $\phi_{n}=\left\{\xi \in \mathbb{C}: \xi^{k}=1\right.$ iff $\left.k \equiv 0 \bmod n\right\}$. We have
(i) $\Phi_{n} \in \mathbb{Z}[z]$ for all n and
(ii) Φ_{n} is irreducible over $\mathbb{Z}[z]$.

Recall that $f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=P(z) /(1-z)$ for some $P(z) \in \mathbb{Z}[z]$ satisfying $P(1) \neq 0$.

Introducing cyclotomic poylinomials

The cyclotomic polynomial of order n is given by

$$
\begin{equation*}
\Phi_{n}(z)=\prod_{\xi \in \phi_{n}}(z-\xi) \tag{8}
\end{equation*}
$$

where $\phi_{n}=\left\{\xi \in \mathbb{C}: \xi^{k}=1\right.$ iff $\left.k \equiv 0 \bmod n\right\}$. We have
(i) $\Phi_{n} \in \mathbb{Z}[z]$ for all n and
(ii) Φ_{n} is irreducible over $\mathbb{Z}[z]$.

Recall that $f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=P(z) /(1-z)$ for some $P(z) \in \mathbb{Z}[z]$ satisfying $P(1) \neq 0$. Now, for any n there exists a unique $s_{n} \in \mathbb{N}_{0}$ s.t.

$$
\begin{equation*}
P_{n}(z)=P(z) \Phi_{n}^{-s_{n}}(z) \tag{9}
\end{equation*}
$$

satisfies $P_{n}(z) \in \mathbb{Z}[z]$ as well as $P_{n}(\xi) \neq 0$ for any $\xi \in \phi_{n}$.

Factoring out the generating function
If $r_{\mathcal{A}}(n)$ becomes constant for some $\mathcal{A} \subseteq \mathbb{N}_{0}$, then

$$
\begin{equation*}
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\frac{P(z)}{1-z} \quad \text { where } \quad P(1) \neq 0 \tag{7}
\end{equation*}
$$

Factoring out the generating function
If $r_{\mathcal{A}}(n)$ becomes constant for some $\mathcal{A} \subseteq \mathbb{N}_{0}$, then

$$
\begin{equation*}
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\frac{P(z)}{1-z} \quad \text { where } \quad P(1) \neq 0 \tag{7}
\end{equation*}
$$

and there exist $s_{n} \in \mathbb{N}_{0}$ such that

$$
\begin{equation*}
P_{n}(z)=P(z) \Phi_{n}^{-s_{n}}(z) \text { satisfies } P_{n}(\xi) \neq 0 \text { for } \xi \in \phi_{n} . \tag{9}
\end{equation*}
$$

Factoring out the generating function
If $r_{\mathcal{A}}(n)$ becomes constant for some $\mathcal{A} \subseteq \mathbb{N}_{0}$, then

$$
\begin{equation*}
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\frac{P(z)}{1-z} \quad \text { where } \quad P(1) \neq 0 \tag{7}
\end{equation*}
$$

and there exist $s_{n} \in \mathbb{N}_{0}$ such that

$$
\begin{equation*}
P_{n}(z)=P(z) \Phi_{n}^{-S_{n}}(z) \text { satisfies } P_{n}(\xi) \neq 0 \text { for } \xi \in \phi_{n} . \tag{9}
\end{equation*}
$$

Proposition

For any $\left(j_{1}, \ldots, j_{d}\right) \in \mathbb{N}_{0}^{d}$ there exist r_{j} satisfying

$$
\begin{equation*}
\lim _{\omega \rightarrow 1} f(\omega \xi) \cdot \Phi_{k_{1}^{j_{1}} \ldots k_{d}^{j_{d}}}^{-r_{j}}(\omega \xi) \notin\{0, \pm \infty\} \tag{10}
\end{equation*}
$$

for any $\xi \in \phi_{k_{1}^{j_{1}} \ldots k_{d}^{d_{d}}}$.

Factoring out the generating function
If $r_{\mathcal{A}}(n)$ becomes constant for some $\mathcal{A} \subseteq \mathbb{N}_{0}$, then

$$
\begin{equation*}
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\frac{P(z)}{1-z} \quad \text { where } \quad P(1) \neq 0 \tag{7}
\end{equation*}
$$

and there exist $s_{n} \in \mathbb{N}_{0}$ such that

$$
\begin{equation*}
P_{n}(z)=P(z) \Phi_{n}^{-S_{n}}(z) \text { satisfies } P_{n}(\xi) \neq 0 \text { for } \xi \in \phi_{n} . \tag{9}
\end{equation*}
$$

Proposition

For any $\left(j_{1}, \ldots, j_{d}\right) \in \mathbb{N}_{0}^{d}$ there exist r_{j} satisfying

$$
\begin{equation*}
\lim _{\omega \rightarrow 1} f(\omega \xi) \cdot \Phi_{k_{1}^{j_{1}} \ldots k_{d}^{j_{d}}}^{-r_{j}}(\omega \xi) \notin\{0, \pm \infty\} \tag{10}
\end{equation*}
$$

for any $\xi \in \phi_{k_{1}^{j_{1}} \ldots k_{d}^{j_{d}}}$. These exponents satisfy $r_{0}=-1 / d$

Factoring out the generating function
If $r_{\mathcal{A}}(n)$ becomes constant for some $\mathcal{A} \subseteq \mathbb{N}_{0}$, then

$$
\begin{equation*}
f_{\mathcal{A}}\left(z^{k_{1}}\right) \cdots f_{\mathcal{A}}\left(z^{k_{d}}\right)=\frac{P(z)}{1-z} \quad \text { where } \quad P(1) \neq 0 \tag{7}
\end{equation*}
$$

and there exist $s_{n} \in \mathbb{N}_{0}$ such that

$$
\begin{equation*}
P_{n}(z)=P(z) \Phi_{n}^{-S_{n}}(z) \text { satisfies } P_{n}(\xi) \neq 0 \text { for } \xi \in \phi_{n} . \tag{9}
\end{equation*}
$$

Proposition

For any $\left(j_{1}, \ldots, j_{d}\right) \in \mathbb{N}_{0}^{d}$ there exist r_{j} satisfying

$$
\begin{equation*}
\lim _{\omega \rightarrow 1} f(\omega \xi) \cdot \Phi_{k_{1}^{j_{1}} \ldots k_{d}^{j_{d}}}^{-r_{j}}(\omega \xi) \notin\{0, \pm \infty\} \tag{10}
\end{equation*}
$$

for any $\xi \in \phi_{k_{1}^{j_{1}} \ldots k_{d}^{j_{d}}}$. These exponents satisfy $r_{0}=-1 / d$ and

$$
\begin{equation*}
r_{\left(j_{1} \ominus b(1,1), \ldots, j_{d} \ominus b(d, 1)\right)}+\cdots+r_{\left(j_{1} \ominus b(1, m), \ldots, j_{d} \ominus b(d, m)\right)}=d s_{j} \tag{11}
\end{equation*}
$$

for all $\boldsymbol{j} \in \mathbb{N}_{0}^{m} \backslash\{\mathbf{0}\}$ where $a \ominus b=\max (a-b, 0)$ and $s_{j}=s_{k_{1}^{k_{1}} \ldots k_{d}^{j_{d}}}$.

Finding a contradiction in the exponents
Consider the case of Rué and Cilleruelo, that is we have $d=2$.

Finding a contradiction in the exponents
Consider the case of Rué and Cilleruelo, that is we have $d=2$. The proposition gives the existence of $\left\{r_{\mathbf{j}}: \mathbf{j} \in \mathbb{N}_{0}^{2}\right\}$ satisfying
(i) $r_{(0,0)}=-1 / 2$,
(ii) $r_{(j+1,0)}=s_{(j+1,0)}-r_{(j, 0)}$,
(iii) $r_{(0, j+1)}=s_{(0, j+1)}-r_{(0, j)}$ and
(iv) $r_{\left(j_{1}+1, j_{2}\right)}+r_{\left(j_{1}, j_{2}+1\right)}=s_{\left(j_{1}+1, j_{2}+1\right)}$.

Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d=2$. The proposition gives the existence of $\left\{r_{\mathbf{j}}: \mathbf{j} \in \mathbb{N}_{0}^{2}\right\}$ satisfying
(i) $r_{(0,0)}=-1 / 2$,
(ii) $r_{(j+1,0)}=s_{(j+1,0)}-r_{(j, 0)}$,
(iii) $r_{(0, j+1)}=s_{(0, j+1)}-r_{(0, j)}$ and
(iv) $r_{\left(j_{1}+1, j_{2}\right)}+r_{\left(j_{1}, j_{2}+1\right)}=s_{\left(j_{1}+1, j_{2}+1\right)}$.

Inductively, as $s_{\star} \in \mathbb{N}_{0}$, we have $r_{\star} \notin \mathbb{Z}$ and therefore $r_{\star} \neq 0$ due to (i).

Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d=2$. The proposition gives the existence of $\left\{r_{\mathbf{j}}: \mathbf{j} \in \mathbb{N}_{0}^{2}\right\}$ satisfying
(i) $r_{(0,0)}=-1 / 2$,
(ii) $r_{(j+1,0)}=s_{(j+1,0)}-r_{(j, 0)}$,
(iii) $r_{(0, j+1)}=s_{(0, j+1)}-r_{(0, j)}$ and (iv) $r_{\left(j_{1}+1, j_{2}\right)}+r_{\left(j_{1}, j_{2}+1\right)}=s_{\left(j_{1}+1, j_{2}+1\right)}$.

Inductively, as $s_{\star} \in \mathbb{N}_{0}$, we have $r_{\star} \notin \mathbb{Z}$ and therefore $r_{\star} \neq 0$ due to (i). As P is a polynomial there exists ℓ_{0} such that $s_{j_{1}, j_{2}}=0$ if $j_{1}+j_{2} \geq \ell_{0}$.

Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d=2$. The proposition gives the existence of $\left\{r_{\mathbf{j}}: \mathbf{j} \in \mathbb{N}_{0}^{2}\right\}$ satisfying
(i) $r_{(0,0)}=-1 / 2$,
(ii) $r_{(j+1,0)}=s_{(j+1,0)}-r_{(j, 0)}$,
(iii) $r_{(0, j+1)}=s_{(0, j+1)}-r_{(0, j)}$ and (iv) $r_{\left(j_{1}+1, j_{2}\right)}+r_{\left(j_{1}, j_{2}+1\right)}=s_{\left(j_{1}+1, j_{2}+1\right)}$.

Inductively, as $s_{\star} \in \mathbb{N}_{0}$, we have $r_{\star} \notin \mathbb{Z}$ and therefore $r_{\star} \neq 0$ due to (i). As P is a polynomial there exists ℓ_{0} such that $s_{j_{1}, j_{2}}=0$ if $j_{1}+j_{2} \geq \ell_{0}$. Assume w.l.o.g. that ℓ_{0} is odd.

Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d=2$. The proposition gives the existence of $\left\{r_{\mathbf{j}}: \mathbf{j} \in \mathbb{N}_{0}^{2}\right\}$ satisfying
(i) $r_{(0,0)}=-1 / 2$,
(ii) $r_{(j+1,0)}=s_{(j+1,0)}-r_{(j, 0)}$,
(iii) $r_{(0, j+1)}=s_{(0, j+1)}-r_{(0, j)}$ and (iv) $r_{\left(j_{1}+1, j_{2}\right)}+r_{\left(j_{1}, j_{2}+1\right)}=s_{\left(j_{1}+1, j_{2}+1\right)}$.

Inductively, as $s_{\star} \in \mathbb{N}_{0}$, we have $r_{\star} \notin \mathbb{Z}$ and therefore $r_{\star} \neq 0$ due to (i). As P is a polynomial there exists ℓ_{0} such that $s_{j_{1}, j_{2}}=0$ if $j_{1}+j_{2} \geq \ell_{0}$. Assume w.l.o.g. that ℓ_{0} is odd. Now

- $r_{\left(\ell_{0}+1,0\right)}=-r_{\left(\ell_{0}, 0\right)}$ due to (ii),

Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d=2$. The proposition gives the existence of $\left\{r_{\mathbf{j}}: \mathbf{j} \in \mathbb{N}_{0}^{2}\right\}$ satisfying
(i) $r_{(0,0)}=-1 / 2$,
(ii) $r_{(j+1,0)}=s_{(j+1,0)}-r_{(j, 0)}$,
(iii) $r_{(0, j+1)}=s_{(0, j+1)}-r_{(0, j)}$ and (iv) $r_{\left(j_{1}+1, j_{2}\right)}+r_{\left(j_{1}, j_{2}+1\right)}=s_{\left(j_{1}+1, j_{2}+1\right)}$.

Inductively, as $s_{\star} \in \mathbb{N}_{0}$, we have $r_{\star} \notin \mathbb{Z}$ and therefore $r_{\star} \neq 0$ due to (i). As P is a polynomial there exists ℓ_{0} such that $s_{j_{1}, j_{2}}=0$ if $j_{1}+j_{2} \geq \ell_{0}$. Assume w.l.o.g. that ℓ_{0} is odd. Now

- $r_{\left(\ell_{0}+1,0\right)}=-r_{\left(\ell_{0}, 0\right)}$ due to (ii),
- $r_{\left(0, \ell_{0}+1\right)}=-r_{\left(0, \ell_{0}\right)}$ due to (iii),

Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d=2$. The proposition gives the existence of $\left\{r_{\mathbf{j}}: \mathbf{j} \in \mathbb{N}_{0}^{2}\right\}$ satisfying
(i) $r_{(0,0)}=-1 / 2$,
(ii) $r_{(j+1,0)}=s_{(j+1,0)}-r_{(j, 0)}$,
(iii) $r_{(0, j+1)}=s_{(0, j+1)}-r_{(0, j)}$ and
(iv) $r_{\left(j_{1}+1, j_{2}\right)}+r_{\left(j_{1}, j_{2}+1\right)}=s_{\left(j_{1}+1, j_{2}+1\right)}$.

Inductively, as $s_{\star} \in \mathbb{N}_{0}$, we have $r_{\star} \notin \mathbb{Z}$ and therefore $r_{\star} \neq 0$ due to (i). As P is a polynomial there exists ℓ_{0} such that $s_{j_{1}, j_{2}}=0$ if $j_{1}+j_{2} \geq \ell_{0}$. Assume w.l.o.g. that ℓ_{0} is odd. Now

- $r_{\left(\ell_{0}+1,0\right)}=-r_{\left(\ell_{0}, 0\right)}$ due to (ii),
- $r_{\left(0, \ell_{0}+1\right)}=-r_{\left(0, \ell_{0}\right)}$ due to (iii),
- $r_{\left(\ell_{0}, 0\right)}=r_{\left(0, \ell_{0}\right)}$ and $r_{\left(\ell_{0}+1,0\right)}=-r_{\left(0, \ell_{0}+1\right)}$ due to (iv)

Finding a contradiction in the exponents

Consider the case of Rué and Cilleruelo, that is we have $d=2$. The proposition gives the existence of $\left\{r_{\mathbf{j}}: \mathbf{j} \in \mathbb{N}_{0}^{2}\right\}$ satisfying
(i) $r_{(0,0)}=-1 / 2$,
(ii) $r_{(j+1,0)}=s_{(j+1,0)}-r_{(j, 0)}$,
(iii) $r_{(0, j+1)}=s_{(0, j+1)}-r_{(0, j)}$ and
(iv) $r_{\left(j_{1}+1, j_{2}\right)}+r_{\left(j_{1}, j_{2}+1\right)}=s_{\left(j_{1}+1, j_{2}+1\right)}$.

Inductively, as $s_{\star} \in \mathbb{N}_{0}$, we have $r_{\star} \notin \mathbb{Z}$ and therefore $r_{\star} \neq 0$ due to (i). As P is a polynomial there exists ℓ_{0} such that $s_{j_{1}, j_{2}}=0$ if $j_{1}+j_{2} \geq \ell_{0}$. Assume w.l.o.g. that ℓ_{0} is odd. Now

- $r_{\left(\ell_{0}+1,0\right)}=-r_{\left(\ell_{0}, 0\right)}$ due to (ii),
- $r_{\left(0, \ell_{0}+1\right)}=-r_{\left(0, \ell_{0}\right)}$ due to (iii),
- $r_{\left(\ell_{0}, 0\right)}=r_{\left(0, \ell_{0}\right)}$ and $r_{\left(\ell_{0}+1,0\right)}=-r_{\left(0, \ell_{0}+1\right)}$ due to (iv)
implying the contradiction $r_{\left(\ell_{0}, 0\right)}=r_{\left(0, \ell_{0}\right)}=r_{\left(\ell_{0}+1,0\right)}=r_{\left(0, \ell_{0}+1\right)}=0$.

Remarks and Open Problems

Conjecture

The cases covered by Moser, that is $1, k, k^{2}, \ldots, k^{d-1}$, are the only ones for which $r_{\mathcal{A}}(n)$ can become constant.

1. What about cases not covered by our result, e.g. $r_{\mathcal{A}}(n ; 2,3,4)$ or $r_{\mathcal{A}}(1,2,6)$?
2. What about the unordered variant

$$
R_{\mathcal{A}}\left(n ; k_{1}, \ldots, k_{d}\right)=\#\left\{\left\{a_{1}, \ldots, a_{d}\right\} \in 2^{\mathcal{A}}: k_{1} a_{1}+\cdots+k_{d} a_{d}=n\right\} ?
$$

3. What about an Erdős-Fuchs-type result for $k_{1}=2$ and $k_{2}=3$?

Thank you for your attention!

