On a problem of Sárközy and Sós for multivariate linear forms

Juanjo Rué Christoph Spiegel

Discrete Mathematics Days

Sevilla, June 2018

A:
$$\#\{(x,y) \in \mathbb{Z}^2 : x^2 + y^2 \le r^2\} = \pi r^2 + E(r)$$

A:
$$\#\{(x,y) \in \mathbb{Z}^2 : x^2 + y^2 \le r^2\} = \pi r^2 + E(r)$$

Theorem (Huxley 2003) We have $E(r) = O(r^{131/208})$.

A:
$$\#\{(x,y) \in \mathbb{Z}^2 : x^2 + y^2 \le r^2\} = \pi r^2 + E(r)$$

Theorem (Huxley 2003) We have $E(r) = O(r^{131/208})$.

Theorem (Hardy 1915; Landau 1915) *We* cannot *have* $E(r) = o(r^{1/2} \log(r)^{1/4})$. Definition For any infinite set $\mathcal{A} \subseteq \mathbb{N}_0$ and $n \in \mathbb{N}_0$, let

$$r_{\mathcal{A}}(n) = \#\{(a_1, a_2) \in \mathcal{A}^2 : a_1 + a_2 = n\}.$$
 (1)

Additive representation functions

Definition For any infinite set $\mathcal{A} \subseteq \mathbb{N}_0$ and $n \in \mathbb{N}_0$, let

$$r_{\mathcal{A}}(n) = \#\{(a_1, a_2) \in \mathcal{A}^2 : a_1 + a_2 = n\}.$$
 (1)

Remark

Trivially $r_{\mathcal{A}}(n)$ *is odd if* n = 2a *for some* $a \in \mathcal{A}$ *and even otherwise.*

Additive representation functions

Definition For any infinite set $\mathcal{A} \subseteq \mathbb{N}_0$ and $n \in \mathbb{N}_0$, let

$$r_{\mathcal{A}}(n) = \#\{(a_1, a_2) \in \mathcal{A}^2 : a_1 + a_2 = n\}.$$
 (1)

Remark

Trivially $r_{\mathcal{A}}(n)$ *is odd if* n = 2a *for some* $a \in \mathcal{A}$ *and even otherwise.*

Theorem (Erdős and Fuchs 1956)

For any infinite $A \subseteq \mathbb{N}$ *and* c > 0 *we* **cannot** *have*

$$\sum_{n=1}^{N} r_{\mathcal{A}}(n) = cN + o(N^{1/4} \log N^{-1/2}).$$
⁽²⁾

Additive representation functions

Definition For any infinite set $\mathcal{A} \subseteq \mathbb{N}_0$ and $n \in \mathbb{N}_0$, let

$$r_{\mathcal{A}}(n) = \#\{(a_1, a_2) \in \mathcal{A}^2 : a_1 + a_2 = n\}.$$
 (1)

Remark

Trivially $r_{\mathcal{A}}(n)$ *is odd if* n = 2a *for some* $a \in \mathcal{A}$ *and even otherwise.*

Theorem (Erdős and Fuchs 1956)

For any infinite $A \subseteq \mathbb{N}$ *and* c > 0 *we* **cannot** *have*

$$\sum_{n=1}^{N} r_{\mathcal{A}}(n) = cN + o(N^{1/4} \log N^{-1/2}).$$
⁽²⁾

Corollary

Considering the case where $\mathcal{A} = \{m^2 : m \in \mathbb{N}\}, c = \pi/4 \text{ and } N = r^2 - 4r/\pi,$ it follows that we **cannot** have $E(r) = o(r^{1/2} \log(r)^{-1/2})$.

INTRO	DUCTION					
Additive representation functions						
	Sárközy and Sós '9 infinite set $\mathcal{A} \subseteq \mathbb{N}_0$ a	7: For which k_1, \ldots, k_d and $n_0 \ge 0$ such that	$\in \mathbb{N}$ does there exist an	۱		

$$r_{\mathcal{A}}(n;k_1,\ldots,k_d) = \#\big\{(a_1,\ldots,a_d) \in \mathcal{A}^d: k_1a_1+\cdots+k_da_d = n\big\}$$

is constant for $n \ge n_0$?

INTRODUC	ΓΙΟΝ	RESULT	Proof	Remarks
Additiv	ve representation	n functions		
i	Sárközy and Sós '9 nfinite set $A \subseteq \mathbb{N}_0$	7: For which k_1, \ldots, k_n and $n_0 > 0$ such that	$k_d \in \mathbb{N}$ does there ex	ist an

 $r_{\mathcal{A}}(n;k_1,\ldots,k_d) = \#\{(a_1,\ldots,a_d) \in \mathcal{A}^d : k_1 a_1 + \cdots + k_d a_d = n\}$

is constant for $n \ge n_0$?

Remark

We already observed that $r_A(n; 1, 1)$ *cannot become constant.*

Sárközy and Sós '97: For which $k_1, \ldots, k_d \in \mathbb{N}$ does there exist an infinite set $A \subseteq \mathbb{N}_0$ and $n_0 \ge 0$ such that

 $r_{\mathcal{A}}(n;k_1,\ldots,k_d) = \#\big\{(a_1,\ldots,a_d) \in \mathcal{A}^d: k_1a_1+\cdots+k_da_d = n\big\}$

is constant for $n \ge n_0$?

Remark

We already observed that $r_A(n; 1, 1)$ cannot become constant. We can extend this to $r_A(n; 1, ..., 1)$.

Sárközy and Sós '97: For which $k_1, \ldots, k_d \in \mathbb{N}$ does there exist an infinite set $\mathcal{A} \subseteq \mathbb{N}_0$ and $n_0 \ge 0$ such that

 $r_{\mathcal{A}}(n;k_1,\ldots,k_d) = \#\big\{(a_1,\ldots,a_d) \in \mathcal{A}^d: k_1a_1+\cdots+k_da_d = n\big\}$

is constant for $n \ge n_0$?

Remark

We already observed that $r_A(n; 1, 1)$ cannot become constant. We can extend this to $r_A(n; 1, ..., 1)$.

Theorem (Moser 1962)

For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_0$ such that $r_{\mathcal{A}}(n; 1, k, k^2, \dots, k^{d-1}) = 1$.

Sárközy and Sós '97: For which $k_1, \ldots, k_d \in \mathbb{N}$ does there exist an infinite set $\mathcal{A} \subseteq \mathbb{N}_0$ and $n_0 \ge 0$ such that

 $r_{\mathcal{A}}(n;k_1,\ldots,k_d) = \#\big\{(a_1,\ldots,a_d) \in \mathcal{A}^d: k_1a_1+\cdots+k_da_d = n\big\}$

is constant for $n \ge n_0$?

Remark

We already observed that $r_A(n; 1, 1)$ cannot become constant. We can extend this to $r_A(n; 1, ..., 1)$.

Theorem (Moser 1962) For any $k \ge 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_0$ such that $r_{\mathcal{A}}(n; 1, k, k^2, \dots, k^{d-1}) = 1$.

Theorem (Rué and Cilleruelo 2009) For any $k_1, k_2 \ge 2$ and $\mathcal{A} \subseteq \mathbb{N}_0$, $r_{\mathcal{A}}(n; k_1, k_2)$ cannot become constant.

Theorem (Moser 1962)

For any $k \ge 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_0$ such that $r_{\mathcal{A}}(n; 1, k, k^2, \dots, k^{d-1}) = 1$.

Theorem (Rué and Cilleruelo 2009)

For any $k_1, k_2 \ge 2$ *and* $A \subseteq \mathbb{N}_0$ *,* $r_A(n; k_1, k_2)$ **cannot** *become constant.*

Theorem (Moser 1962)

For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_0$ such that $r_{\mathcal{A}}(n; 1, k, k^2, \dots, k^{d-1}) = 1$.

Theorem (Rué and Cilleruelo 2009) For any $k_1, k_2 \ge 2$ and $\mathcal{A} \subseteq \mathbb{N}_0$, $r_{\mathcal{A}}(n; k_1, k_2)$ cannot become constant.

Theorem (Rué and S. 2018+) If there are pairwise co-prime integers $q_1, \ldots, q_m \ge 2$ such that

$$k_i = q_1^{b(i,1)} \cdots q_m^{b(i,m)} \ge 2$$
(3)

where $b(i,j) \in \{0,1\}$, then $r_A(n;k_1,\ldots,k_d)$ cannot become constant for any infinite $A \subseteq \mathbb{N}_0$.

Theorem (Moser 1962)

For any $k \geq 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_0$ such that $r_{\mathcal{A}}(n; 1, k, k^2, \dots, k^{d-1}) = 1$.

Theorem (Rué and Cilleruelo 2009) For any $k_1, k_2 \ge 2$ and $\mathcal{A} \subseteq \mathbb{N}_0$, $r_{\mathcal{A}}(n; k_1, k_2)$ cannot become constant.

Theorem (Rué and S. 2018+) If there are pairwise co-prime integers $q_1, \ldots, q_m \ge 2$ such that

$$k_i = q_1^{b(i,1)} \cdots q_m^{b(i,m)} \ge 2$$
(3)

where $b(i,j) \in \{0,1\}$, then $r_A(n;k_1,\ldots,k_d)$ cannot become constant for any infinite $A \subseteq \mathbb{N}_0$. This includes the case of pairwise co-prime $k_1,\ldots,k_d \ge 2$.

Theorem (Moser 1962) For any $k \ge 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_0$ such that $r_{\mathcal{A}}(n; 1, k) = 1$ for all $n \ge 0$. Theorem (Moser 1962) For any $k \ge 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_0$ such that $r_{\mathcal{A}}(n; 1, k) = 1$ for all $n \ge 0$.

Proof. The generating function of A is $f_A(z) = \sum_{a \in A} z^a$.

Pr<u>oof</u>

The proof of Moser's result

Theorem (Moser 1962) For any $k \ge 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_0$ such that $r_{\mathcal{A}}(n; 1, k) = 1$ for all $n \ge 0$.

Proof.

The generating function of A is $f_A(z) = \sum_{a \in A} z^a$. We have

$$f_{\mathcal{A}}(z)f_{\mathcal{A}}(z^{k}) = \sum_{(a,a')\in\mathcal{A}^{2}} z^{a+ka'} = \sum_{n=0}^{\infty} r(n;1,k) z^{n} \stackrel{!}{=} \sum_{n=0}^{\infty} z^{n} = \frac{1}{1-z}.$$
 (4)

The proof of Moser's result

Theorem (Moser 1962) For any $k \ge 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_0$ such that $r_{\mathcal{A}}(n; 1, k) = 1$ for all $n \ge 0$.

Proof.

The generating function of \mathcal{A} is $f_{\mathcal{A}}(z) = \sum_{a \in \mathcal{A}} z^a$. We have

$$f_{\mathcal{A}}(z)f_{\mathcal{A}}(z^{k}) = \sum_{(a,a')\in\mathcal{A}^{2}} z^{a+ka'} = \sum_{n=0}^{\infty} r(n;1,k) \, z^{n} \stackrel{!}{=} \sum_{n=0}^{\infty} z^{n} = \frac{1}{1-z}.$$
 (4)

Writing $f_{\mathcal{A}}(z) = (1 - z)^{-1} f_{\mathcal{A}}^{-1}(z^k)$ and repeatedly substituting,

The proof of Moser's result

Theorem (Moser 1962) For any $k \ge 2$ there exists $\mathcal{A} \subseteq \mathbb{N}_0$ such that $r_{\mathcal{A}}(n; 1, k) = 1$ for all $n \ge 0$.

Proof.

The generating function of \mathcal{A} is $f_{\mathcal{A}}(z) = \sum_{a \in \mathcal{A}} z^a$. We have

$$f_{\mathcal{A}}(z)f_{\mathcal{A}}(z^{k}) = \sum_{(a,a')\in\mathcal{A}^{2}} z^{a+ka'} = \sum_{n=0}^{\infty} r(n;1,k) \, z^{n} \stackrel{!}{=} \sum_{n=0}^{\infty} z^{n} = \frac{1}{1-z}.$$
 (4)

Writing $f_{\mathcal{A}}(z) = (1 - z)^{-1} f_{\mathcal{A}}^{-1}(z^k)$ and repeatedly substituting, we get

$$f_{\mathcal{A}}(z) = \prod_{j=0}^{\infty} \left(1 + z^{(k^2)^j} + z^{2(k^2)^j} + \dots + z^{(k-1)(k^2)^j} \right).$$

The proof of Moser's result

Theorem (Moser 1962) For any $k \ge 2$ there exists $A \subseteq \mathbb{N}_0$ such that $r_A(n; 1, k) = 1$ for all $n \ge 0$.

Proof.

The generating function of \mathcal{A} is $f_{\mathcal{A}}(z) = \sum_{a \in \mathcal{A}} z^a$. We have

$$f_{\mathcal{A}}(z)f_{\mathcal{A}}(z^{k}) = \sum_{(a,a')\in\mathcal{A}^{2}} z^{a+ka'} = \sum_{n=0}^{\infty} r(n;1,k) \, z^{n} \stackrel{!}{=} \sum_{n=0}^{\infty} z^{n} = \frac{1}{1-z}.$$
 (4)

Writing $f_{\mathcal{A}}(z) = (1 - z)^{-1} f_{\mathcal{A}}^{-1}(z^k)$ and repeatedly substituting, we get

$$f_{\mathcal{A}}(z) = \prod_{j=0}^{\infty} \left(1 + z^{(k^2)^j} + z^{2(k^2)^j} + \dots + z^{(k-1)(k^2)^j} \right).$$

This is the representation function of the set of all integers whose k^2 -ary representation has only digits strictly smaller than k.

PROOF

Proof Outline of Main Result

Proof Outline. From here on we will abbreviate $r_A(n) = r_A(n; k_1, ..., k_d)$.

Proof Outline of Main Result

Proof Outline. From here on we will abbreviate $r_A(n) = r_A(n; k_1, ..., k_d)$. Generalising the previous approach, we have

$$f_{\mathcal{A}}(z^{k_1})\cdots f_{\mathcal{A}}(z^{k_d}) = \sum_{(a_1,\dots,a_d)\in\mathcal{A}^d} z^{k_1a_1+\dots+k_da_d} = \sum_{n=0}^{\infty} r_{\mathcal{A}}(n) \, z^n.$$
(5)

Proof Outline of Main Result

Proof Outline. From here on we will abbreviate $r_A(n) = r_A(n; k_1, ..., k_d)$. Generalising the previous approach, we have

$$f_{\mathcal{A}}(z^{k_1})\cdots f_{\mathcal{A}}(z^{k_d}) = \sum_{(a_1,\dots,a_d)\in\mathcal{A}^d} z^{k_1a_1+\dots+k_da_d} = \sum_{n=0}^{\infty} r_{\mathcal{A}}(n) \, z^n.$$
(5)

If $r_A(n)$ becomes constant, that is there exist c > 0 and $n_0 \ge 0$ such that $r_A(n) = c$ for $n \ge n_0 \ge 0$,

Proof

Proof Outline of Main Result

Proof Outline. From here on we will abbreviate $r_A(n) = r_A(n; k_1, ..., k_d)$. Generalising the previous approach, we have

$$f_{\mathcal{A}}(z^{k_1})\cdots f_{\mathcal{A}}(z^{k_d}) = \sum_{(a_1,\dots,a_d)\in\mathcal{A}^d} z^{k_1a_1+\dots+k_da_d} = \sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^n.$$
(5)

If $r_A(n)$ becomes constant, that is there exist c > 0 and $n_0 \ge 0$ such that $r_A(n) = c$ for $n \ge n_0 \ge 0$, then

$$\sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^{n} = \sum_{n=0}^{n_{0}-1} r_{\mathcal{A}}(n) z^{n} + \sum_{n=n_{0}}^{\infty} c z^{n} = Q(z) + c \frac{z^{n_{0}}}{1-z} = \frac{P(z)}{1-z}$$
(6)

PROOF

Proof Outline of Main Result

Proof Outline. From here on we will abbreviate $r_A(n) = r_A(n; k_1, ..., k_d)$. Generalising the previous approach, we have

$$f_{\mathcal{A}}(z^{k_1})\cdots f_{\mathcal{A}}(z^{k_d}) = \sum_{(a_1,\dots,a_d)\in\mathcal{A}^d} z^{k_1a_1+\dots+k_da_d} = \sum_{n=0}^{\infty} r_{\mathcal{A}}(n) \, z^n.$$
(5)

If $r_A(n)$ becomes constant, that is there exist c > 0 and $n_0 \ge 0$ such that $r_A(n) = c$ for $n \ge n_0 \ge 0$, then

$$\sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^{n} = \sum_{n=0}^{n_{0}-1} r_{\mathcal{A}}(n) z^{n} + \sum_{n=n_{0}}^{\infty} c z^{n} = Q(z) + c \frac{z^{n_{0}}}{1-z} = \frac{P(z)}{1-z} \quad (6)$$

where $Q \in \mathbb{N}_0[z]$ and $P \in \mathbb{Z}[z]$ are polynomials and $P(1) \neq 0$.

PROOF

Proof Outline of Main Result

Proof Outline. From here on we will abbreviate $r_A(n) = r_A(n; k_1, ..., k_d)$. Generalising the previous approach, we have

$$f_{\mathcal{A}}(z^{k_1})\cdots f_{\mathcal{A}}(z^{k_d}) = \sum_{(a_1,\dots,a_d)\in\mathcal{A}^d} z^{k_1a_1+\dots+k_da_d} = \sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^n.$$
(5)

If $r_A(n)$ becomes constant, that is there exist c > 0 and $n_0 \ge 0$ such that $r_A(n) = c$ for $n \ge n_0 \ge 0$, then

$$\sum_{n=0}^{\infty} r_{\mathcal{A}}(n) z^{n} = \sum_{n=0}^{n_{0}-1} r_{\mathcal{A}}(n) z^{n} + \sum_{n=n_{0}}^{\infty} c z^{n} = Q(z) + c \frac{z^{n_{0}}}{1-z} = \frac{P(z)}{1-z}$$
(6)

where $Q \in \mathbb{N}_0[z]$ and $P \in \mathbb{Z}[z]$ are polynomials and $P(1) \neq 0$. We have

$$f_{\mathcal{A}}(z^{k_1})\cdots f_{\mathcal{A}}(z^{k_d}) = \frac{P(z)}{1-z}.$$
(7)

		Proof	
Introducing cyclo	tomic povlinomials		

$$\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi) \tag{8}$$

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \mod n\}.$

		PROOF	
Introducing cyclo	tomic povlinomials		

$$\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi) \tag{8}$$

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \mod n\}$. We have

		PROOF	
Introducina cycloto	omic povlinomials		

$$\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi) \tag{8}$$

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \mod n\}$. We have

(i) $\Phi_n \in \mathbb{Z}[z]$ for all n

		Proof	
Introducing cycloto	mic poylinomials		

$$\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi) \tag{8}$$

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \mod n\}$. We have

- (i) $\Phi_n \in \mathbb{Z}[z]$ for all *n* and
- (ii) Φ_n is irreducible over $\mathbb{Z}[z]$.

		PROOF	
Introducina cvcloto	mic povlinomials		

$$\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi) \tag{8}$$

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \mod n\}$. We have

- (i) $\Phi_n \in \mathbb{Z}[z]$ for all *n* and
- (ii) Φ_n is irreducible over $\mathbb{Z}[z]$.

Recall that $f_{\mathcal{A}}(z^{k_1}) \cdots f_{\mathcal{A}}(z^{k_d}) = P(z)/(1-z)$ for some $P(z) \in \mathbb{Z}[z]$ satisfying $P(1) \neq 0$.

		PROOF	
Introducing cyclotom	nic poylinomials		

$$\Phi_n(z) = \prod_{\xi \in \phi_n} (z - \xi) \tag{8}$$

where $\phi_n = \{\xi \in \mathbb{C} : \xi^k = 1 \text{ iff } k \equiv 0 \mod n\}$. We have

- (i) $\Phi_n \in \mathbb{Z}[z]$ for all *n* and
- (ii) Φ_n is irreducible over $\mathbb{Z}[z]$.

Recall that $f_{\mathcal{A}}(z^{k_1}) \cdots f_{\mathcal{A}}(z^{k_d}) = P(z)/(1-z)$ for some $P(z) \in \mathbb{Z}[z]$ satisfying $P(1) \neq 0$. Now, for any *n* there exists a unique $s_n \in \mathbb{N}_0$ s.t.

$$P_n(z) = P(z) \Phi_n^{-s_n}(z) \tag{9}$$

satisfies $P_n(z) \in \mathbb{Z}[z]$ as well as $P_n(\xi) \neq 0$ for any $\xi \in \phi_n$.

INTRODUCTION		PROOF	REMARKS
Factoring out the	generating functi	ion	
If $r_{\mathcal{A}}(n)$ become	es constant for some	$\mathcal{A} \subseteq \mathbb{N}_0$, then	

$$f_{\mathcal{A}}(z^{k_1})\cdots f_{\mathcal{A}}(z^{k_d}) = \frac{P(z)}{1-z} \quad \text{where} \quad P(1) \neq 0 \tag{7}$$

Factoring out the generating function	
If $r_{\mathcal{A}}(n)$ becomes constant for some $\mathcal{A} \subseteq \mathbb{N}_0$, then	
$f_{\mathcal{A}}(z^{k_1})\cdots f_{\mathcal{A}}(z^{k_d})=rac{P(z)}{1-z} ext{where} P(1) eq 0$	(7)

and there exist $s_n \in \mathbb{N}_0$ such that

 $P_n(z) = P(z) \Phi_n^{-s_n}(z) \text{ satisfies } P_n(\xi) \neq 0 \text{ for } \xi \in \phi_n.$ (9)

PROOF

Factoring out the generating function	
If $r_{\mathcal{A}}(n)$ becomes constant for some $\mathcal{A} \subseteq \mathbb{N}_0$, then	
$f_{\mathcal{A}}(z^{k_1})\cdots f_{\mathcal{A}}(z^{k_d})=rac{P(z)}{1-z} ext{where} P(1) eq 0$	(7)

and there exist $s_n \in \mathbb{N}_0$ such that

 $P_n(z) = P(z) \Phi_n^{-s_n}(z) \text{ satisfies } P_n(\xi) \neq 0 \text{ for } \xi \in \phi_n.$ (9)

Proposition

For any $(j_1, \ldots, j_d) \in \mathbb{N}_0^d$ there exist r_j satisfying

$$\lim_{\omega \to 1} f(\omega\xi) \cdot \Phi_{k_1^{j_1} \cdots k_d^{j_d}}^{-r_j}(\omega\xi) \notin \{0, \pm \infty\}$$
(10)

PROOF

for any $\xi \in \phi_{k_1^{j_1} \cdots k_d^{j_d}}$.

Factoring out the generating function	
If $r_{\mathcal{A}}(n)$ becomes constant for some $\mathcal{A} \subseteq \mathbb{N}_0$, then	
$f_\mathcal{A}(z^{k_1})\cdots f_\mathcal{A}(z^{k_d})=rac{P(z)}{1-z} ext{where} P(1) eq 0$	(7)

and there exist $s_n \in \mathbb{N}_0$ such that

 $P_n(z) = P(z) \Phi_n^{-s_n}(z) \text{ satisfies } P_n(\xi) \neq 0 \text{ for } \xi \in \phi_n.$ (9)

Proposition

For any $(j_1, \ldots, j_d) \in \mathbb{N}_0^d$ there exist r_j satisfying

$$\lim_{\omega \to 1} f(\omega\xi) \cdot \Phi_{k_1^{j_1} \cdots k_d^{j_d}}^{-r_j}(\omega\xi) \notin \{0, \pm \infty\}$$
(10)

PROOF

for any $\xi \in \phi_{k_1^{j_1} \dots k_d^{j_d}}$. These exponents satisfy $r_0 = -1/d$

Factoring out the generating function	
If $r_{\mathcal{A}}(n)$ becomes constant for some $\mathcal{A} \subseteq \mathbb{N}_0$, then	
$f_{\mathcal{A}}(z^{k_1})\cdots f_{\mathcal{A}}(z^{k_d}) = rac{P(z)}{1-z}$ where $P(1) \neq 0$	(7)
and there exist $s_n \in \mathbb{N}_0$ such that	

 $P_n(z) = P(z) \Phi_n^{-s_n}(z) \text{ satisfies } P_n(\xi) \neq 0 \text{ for } \xi \in \phi_n.$ (9)

Proposition

For any $(j_1, \ldots, j_d) \in \mathbb{N}_0^d$ there exist r_j satisfying

$$\lim_{\omega \to 1} f(\omega\xi) \cdot \Phi_{k_1^{j_1} \cdots k_d^{j_d}}^{-r_j}(\omega\xi) \notin \{0, \pm \infty\}$$
(10)

PROOF

for any $\xi \in \phi_{k_1^{j_1} \dots k_d^{j_d}}$. These exponents satisfy $r_0 = -1/d$ and

 $r_{(j_1 \ominus b(1,1), \dots, j_d \ominus b(d,1))} + \dots + r_{(j_1 \ominus b(1,m), \dots, j_d \ominus b(d,m))} = ds_j$ (11)

for all $j \in \mathbb{N}_0^m \setminus \{\mathbf{0}\}$ where $a \ominus b = \max(a - b, 0)$ and $s_j = s_{k_1^{j_1} \dots k_d^{j_d}}$.

		PROOF	
Finding a contradiction	in the exponents		

Consider the case of Rué and Cilleruelo, that is we have d = 2.

Consider the case of Rué and Cilleruelo, that is we have d = 2. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

(i) $r_{(0,0)} = -1/2$, (ii) $r_{(j+1,0)} = s_{(j+1,0)} - r_{(j,0)}$, (iii) $r_{(0,j+1)} = s_{(0,j+1)} - r_{(0,j)}$ and (iv) $r_{(j_1+1,j_2)} + r_{(j_1,j_2+1)} = s_{(j_1+1,j_2+1)}$.

PROOF

Consider the case of Rué and Cilleruelo, that is we have d = 2. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

PROOF

Inductively, as $s_* \in \mathbb{N}_0$, we have $r_* \notin \mathbb{Z}$ and therefore $r_* \neq 0$ due to (i).

Consider the case of Rué and Cilleruelo, that is we have d = 2. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

PROOF

Inductively, as $s_* \in \mathbb{N}_0$, we have $r_* \notin \mathbb{Z}$ and therefore $r_* \neq 0$ due to (i). As *P* is a polynomial there exists ℓ_0 such that $s_{j_1,j_2} = 0$ if $j_1 + j_2 \ge \ell_0$.

Consider the case of Rué and Cilleruelo, that is we have d = 2. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

Inductively, as $s_* \in \mathbb{N}_0$, we have $r_* \notin \mathbb{Z}$ and therefore $r_* \neq 0$ due to (i). As *P* is a polynomial there exists ℓ_0 such that $s_{j_1,j_2} = 0$ if $j_1 + j_2 \ge \ell_0$. Assume w.l.o.g. that ℓ_0 is odd.

RESULT

Proof

Consider the case of Rué and Cilleruelo, that is we have d = 2. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

PROOF

Inductively, as $s_* \in \mathbb{N}_0$, we have $r_* \notin \mathbb{Z}$ and therefore $r_* \neq 0$ due to (i). As *P* is a polynomial there exists ℓ_0 such that $s_{j_1,j_2} = 0$ if $j_1 + j_2 \ge \ell_0$. Assume w.l.o.g. that ℓ_0 is odd. Now

•
$$r_{(\ell_0+1,0)} = -r_{(\ell_0,0)}$$
 due to (ii),

Consider the case of Rué and Cilleruelo, that is we have d = 2. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

Inductively, as $s_* \in \mathbb{N}_0$, we have $r_* \notin \mathbb{Z}$ and therefore $r_* \neq 0$ due to (i). As *P* is a polynomial there exists ℓ_0 such that $s_{j_1,j_2} = 0$ if $j_1 + j_2 \ge \ell_0$. Assume w.l.o.g. that ℓ_0 is odd. Now

• $r_{(\ell_0+1,0)} = -r_{(\ell_0,0)}$ due to (ii),

•
$$r_{(0,\ell_0+1)} = -r_{(0,\ell_0)}$$
 due to (iii),

Consider the case of Rué and Cilleruelo, that is we have d = 2. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

PROOF

Inductively, as $s_* \in \mathbb{N}_0$, we have $r_* \notin \mathbb{Z}$ and therefore $r_* \neq 0$ due to (i). As *P* is a polynomial there exists ℓ_0 such that $s_{j_1,j_2} = 0$ if $j_1 + j_2 \ge \ell_0$. Assume w.l.o.g. that ℓ_0 is odd. Now

• $r_{(\ell_0+1,0)} = -r_{(\ell_0,0)}$ due to (ii),

•
$$r_{(0,\ell_0+1)} = -r_{(0,\ell_0)}$$
 due to (iii)

• $r_{(\ell_0,0)} = r_{(0,\ell_0)}$ and $r_{(\ell_0+1,0)} = -r_{(0,\ell_0+1)}$ due to (iv)

Consider the case of Rué and Cilleruelo, that is we have d = 2. The proposition gives the existence of $\{r_j : j \in \mathbb{N}_0^2\}$ satisfying

Inductively, as $s_* \in \mathbb{N}_0$, we have $r_* \notin \mathbb{Z}$ and therefore $r_* \neq 0$ due to (i). As *P* is a polynomial there exists ℓ_0 such that $s_{j_1,j_2} = 0$ if $j_1 + j_2 \ge \ell_0$. Assume w.l.o.g. that ℓ_0 is odd. Now

•
$$r_{(\ell_0+1,0)} = -r_{(\ell_0,0)}$$
 due to (ii),

•
$$r_{(0,\ell_0+1)} = -r_{(0,\ell_0)}$$
 due to (iii),

► $r_{(\ell_0,0)} = r_{(0,\ell_0)}$ and $r_{(\ell_0+1,0)} = -r_{(0,\ell_0+1)}$ due to (iv)

implying the contradiction $r_{(\ell_0,0)} = r_{(0,\ell_0)} = r_{(\ell_0+1,0)} = r_{(0,\ell_0+1)} = 0.$

ULT

Proof

Remarks and Open Problems

Conjecture

The cases covered by Moser, that is $1, k, k^2, \ldots, k^{d-1}$, are the only ones for which $r_A(n)$ can become constant.

- 1. What about cases not covered by our result, e.g. $r_A(n; 2, 3, 4)$ or $r_A(1, 2, 6)$?
- 2. What about the unordered variant

 $R_{\mathcal{A}}(n;k_1,\ldots,k_d) = \#\{\{a_1,\ldots,a_d\} \in 2^{\mathcal{A}}: k_1a_1 + \cdots + k_da_d = n\}?$

3. What about an Erdős-Fuchs-type result for $k_1 = 2$ and $k_2 = 3$?

Thank you for your attention!