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1. The Ramsey Multiplicity Problem

The Ramsey Multiplicity of triangles
Theorem (Ramsey 1930)

For any t ∈ N there exists R(t) ∈ N such that any 2-edge-coloring of the complete
graph of order at least R(t) contains a monochromatic clique of size t.

A well-known question: Can we determine R(t)?
A related question: How many cliques do we need to have? That means, letting
kt(G) denote the fraction of all possible t-cliques in G , what is

ct = lim
n→∞

min{kt(G) + kt(G) : G graph of order n}?

Theorem (Goodman 1959)

c3 = 1/4.
→ Same as Erdős-Rényi

random graph! →
Conjecture (Erdős 1962)

ct = 21−(t
2).
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random graph! →
Conjecture (Erdős 1962)
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1. The Ramsey Multiplicity Problem

Ramsey Multiplicity beyond triangles

Theorem (Thomason 1989)

c4 ≤ 0.976 · 2−5 and c5 ≤ 0.906 · 2−9.
Theorem (Even-Zohar and Linial ’15)

c4 ≤ 0.969 · 2−5.

Erdős conjecture was false! But what about lower bounds?

Theorem (Giraud 1976)

c4 ≥ 0.695 · 2−5.
Theorem (Sperfeld / Nieß’11)

c4 ≥ 0.914 · 2−5.
Theorem (Grzesik et al. ’20)

c4 ≥ 0.947 · 2−5.

Both the best upper and lower bounds heavily rely on computer-assistence!

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

c4 ≤ 0.964 · 2−5 and 0.780 · 2−9 ≤ c5 ≤ 0.874 · 2−9.

How can we use Optimization to formulate mathematical proofs?
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2. Search Heuristics for Upper Bounds

Graph blow-ups
We want constructive bounds that are ‘finitely describable’. Random graphs are one
source for such constructions. Another natural deterministic one are graph blow-ups.

Definition
The m-fold blow-up C [m] of a graph C is given by replacing each vertex in C with an
independent set of size m. Two vertices are adjacent if the originals were.

Using blow-ups, we can derive an upper bounds for ct from any graph C through

ct ≤ lim
m→∞

kt
(
C [m]

)
+ kt

(
C [m]

)
. (1)

This is in fact efficiently computable since

lim
m→∞

kt(C [m]) = nt kt(C) /nt and lim
m→∞

kt(C [m]) =
t∑

j=1
S(t, j)nj kj(C)/nt . (2)
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2. Search Heuristics for Upper Bounds

Constructing graphs through search heuristics

For fixed n and s ∈ {0, 1}(
n
2) let Cs =

(
[n],

{
ij : i < j , s(j−1

2 )+i = 1
})

and consider

min
s∈{0,1}(

n
2)

s∑
j=1

S(t, j)nj kj(Cs)
nt + nt kt(Cs)

nt .

So we have found our optimization problem! How to solve it?

Approach 1. For n / 7 we can check all states s exhaustively.

Unfortunately even n = 40 is much too small for c4 and c5, barely disproving Erdős’
original conjecture. Can we use combinatorial insights to bias the search space?
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So we have found our optimization problem! How to solve it?

Approach 2. For n / 10 we can generate all graphs up to isomorphism.

Unfortunately even n = 40 is much too small for c4 and c5, barely disproving Erdős’
original conjecture. Can we use combinatorial insights to bias the search space?
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Unfortunately even n = 40 is much too small for c4 and c5, barely disproving Erdős’
original conjecture. Can we use combinatorial insights to bias the search space?
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original conjecture. Can we use combinatorial insights to bias the search space?
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original conjecture. Can we use combinatorial insights to bias the search space?
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2. Search Heuristics for Upper Bounds

Constructing Cayley graphs through search heuristics
Thomason’s constructions are based on computing the values of XOR-graph-products.
The results are in fact Cayley graphs in C×2

3 × C×5
2 and C3 × C×6

2 .

Definition
Given an abelian group G and set S ⊆ G? satisfying S−1 = S, the associated Cayley
graph has vertex set G and g1, g2 ∈ G are adjacent if and only if g−1

1 g2 ∈ S.

Idea. Why not directly search Cayley graph constructions?

The binary vector s now represents the generating set S. Since |G |/2 < |S| < |G | the
number of variables is therefore linear (instead of quadratic) in the number of vertices!

The groups C3 × C×8
2 and C3 × C×6

2 give the improved upper bounds for c4 and c5.
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3. Flag Algebras for Lower Bounds

A trivial computational lower bound

The Flag Algebra SDP approach can be seen as (i) a formalized Cauchy-Schwarz-type
argument and (ii) an improvement over a trivial computational lower bound.

Let dH(G) denote the probability that v(H) vertices chosen uniformly at random in G
induce a copy of H. Writing ct(G) = kt(G) + kt(G), basic double counting gives us

ct(G) =
∑

H graph
v(H)=N

dH(G) ct(H) (3)

for t ≤ N ≤ v(G). For any N ≥ t this implies a trivial lower bound of

ct ≥ min
H graph
v(H)=N

ct(H). (4)
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3. Flag Algebras for Lower Bounds

The Flag Algebras SDP approach
Razborov (2007) introduced Flag Algebras in order to study this type of problem. One
important observation is that for any Q � 0 the coefficients aH = 〈Q, DH〉 satisfy∑

H graph
v(H)=N

dH(G) aH ≤ O(1/v(G)) (5)

for any graph G . Through (3) this implies the (hopefully improved) bound

ct ≥ min
H graph
v(H)=N

ct(H)− aH . (6)

This approach gives the best current lower bounds for c4 and c5. The biggest
bottleneck for further improvements consists of finding Q for larger N.
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4. A Related Problem

Off-diagonal Ramsey Multiplicity
Question. Determining c3 is easy, but even c4 has been unresolved for over 60 years,
so can we say more when studying the off-diagonal variant

cs,t = lim
n→∞

min{ks(G) + kt(G) : |G | = n}?

A famous result of Reiher from 2016 implies that c2,t = 1/(t − 1).

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

c3,4 = 689 · 3−8 and any large enough graph G admits a strong homomorphism into
the Schläfli graph after changing at most O(k3(G) + k4(G)− c3,4) v(G)2 edges.

The fact that we can show stability proves that the search heuristic found
a unique global optimum over all graphs of order 27!
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c3,4 = 689 · 3−8 and any large enough graph G admits a strong homomorphism into
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Thank you for your attention!
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