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Combinatorial Symmetries in Flag Algebras

1. What are we interested in?

2. Where does Optimization come in?

3. Where can we go from here?



1. What are we interested in?

The Ramsey Multiplicity Problem
Theorem (Ramsey 1930)

For any t ∈ N there exists Rt,t ∈ N such that any 2-edge-coloring of the complete
graph of order at least Rt,t contains a monochromatic clique of size t.

A well-known question:
Can we determine Rt1,...,tc ?

A related question:

How many cliques do we need to have?

Letting χ : E (Kn) → [c] denote a coloring of the complete graph, χi the graph given
by color i and kti (χi) count all ti -cliques in that color, we want to determine

mt1,...,tc (n) = min
χ

mt1,...,tc (χ) = min
χ

kt1(χ1)(n
t1

) + . . .
ktc (χc)(n

tc

) .
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1. What are we interested in?

A connection to Ramsey Multiplicity Numbers

The two questions are related through the following inequality:

mt1,...tc = lim
n→∞

mt1,...tc (n) ≤ (Rt1,...,tc−1 − 1)1−tc . (1)

Proof Write R = Rt1,...,tc−1 and let χ be an extremal c − 1-coloring of KR−1.

Consider the sequence of c-colorings χm of Km (R−1) obtained by replacing each
v ∈ [R − 1] by m copies v1, . . . , vm and setting χm(viwj) = χ(vw). The edges vivj get
colored with the additional color c.

The graphs χi
m avoid cliques of size ti for 1 ≤ i ≤ c − 1 and each of the m large

cliques in χc
m contains exactly an (R − 1)−tc proportion of all possible tc -cliques.
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1. What are we interested in?

A connection to Ramsey Multiplicity Numbers

The two questions are related through the following inequality:

mt1,...tc = lim
n→∞

mt1,...tc (n) ≤ (Rt1,...,tc−1 − 1)1−tc . (1)

Proof Sketch Blow up χ while using the additional color c for the cliques.

Theorem (Goodman 1959)

Exact characterization of m3,3(n) for all n ∈ N implying m3,3 = 1/4 = (R3 − 1)1−3.

Proof Sketch The upper bound follows from Equation (1). The matching lower bound
follows through double counting argument and an application of Cauchy-Schwarz.
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A connection to Ramsey Multiplicity Numbers

The two questions are related through the following inequality:

mt1,...tc = lim
n→∞

mt1,...tc (n) ≤ (Rt1,...,tc−1 − 1)1−tc . (1)

Proof Sketch Blow up χ while using the additional color c for the cliques.

Theorem (Goodman 1959)

Exact characterization of m3,3(n) for all n ∈ N implying m3,3 = 1/4 = (R3 − 1)1−3.

Proof Sketch The upper bound follows from Equation (1). The matching lower bound
follows through double counting argument and an application of Cauchy-Schwarz.



1. What are we interested in?

Fixing two colors and growing the size of cliques

When c = 2 and t1 = t2 = t, we have Rt = t and a uniform random coloring beats (1).

Conjecture (Erdős 1962)

mt,t(n) = 21−(t
2) for any t ∈ N. False for t ≥ 4 (Thomason 1989)

Theorem (Thomason 1989)

m4,4 ≤ 0.03050 and m5,5 ≤ 0.001770.
Theorem (Giraud 1976)

m4,4 ≥ 0.02172

Theorem (Parczyk, Pokutta, S., Szabó 2022)

m3,4 = 689/38 and the extremal constructions are based on the Schläfli graph.
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Conjecture (Erdős 1962)

mt,t(n) = 21−(t
2) for any t ∈ N. False for t ≥ 4 (Thomason 1989)

Theorem (Thomason 1997)

m4,4 ≤ 0.03032 and m5,5 ≤ 0.001721.
Theorem (Giraud 1976)

m4,4 ≥ 0.02172

Theorem (Parczyk, Pokutta, S., Szabó 2022)

m3,4 = 689/38 and the extremal constructions are based on the Schläfli graph.
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m3,4 = 689/38 and the extremal constructions are based on the Schläfli graph.
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1. What are we interested in?

Fixing triangles and growing the number of colors

Theorem (Goodman 1959)

m3,3 = 1/4 = 1/(R3 − 1)2 and there are many extremal constructions.

Theorem (Cummings et al. 2013)

m3,3,3 = 1/25 = 1/(R3,3 − 1)2 and the only extremal constructions are based on R3,3.

Theorem (Kiem, Pokutta, S. 2022+)

m3,3,3,3 = 1/256 = 1/(R3,3,3 − 1)2.

Open Problem: m3,...,3 = (R3,...,3 − 1)−2 for all c or m3,...,3 · (R3,...,3 − 1)2 = o(1)?
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2. Where does Optimization come in?

Upper bounds through Discrete Optimization

Using blow-ups, we can derive an upper bound for mt1,...,tc from any coloring

χ : E (Kn) ∪ {n} → [c]

of the looped complete graph through

mt1,...,tc ≤ m′
t1,...,tc (χ) =

k ′
t1(χ1)
nt1

+ . . . +
k ′

tc (χc)
ntc

,

where k ′
ti (χi) counts not necessarily injective copies of ti -cliques in χi .

So we have found a discrete optimization problem! How to solve it?

Approach 0. Check some obvious existing constructions.
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Approach 1 Check colorings χ exhaustively.
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ti (χi) counts not necessarily injective copies of ti -cliques in χi .

So we have found a discrete optimization problem! How to solve it?

Approach 1.5 Check colorings χ exhaustively up to isomorphism.
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Using blow-ups, we can derive an upper bound for mt1,...,tc from any coloring
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ti (χi) counts not necessarily injective copies of ti -cliques in χi .

So we have found a discrete optimization problem! How to solve it?

Approach 2 Bounded Tree search taking the parameter into account.
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Using blow-ups, we can derive an upper bound for mt1,...,tc from any coloring
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So we have found a discrete optimization problem! How to solve it?

Approach 3 Search Heuristics → upper bounds for m4,4, m5,5 and m3,4



2. Where does Optimization come in?

Upper bounds through Discrete Optimization

Using blow-ups, we can derive an upper bound for mt1,...,tc from any coloring

χ : E (Kn) ∪ {n} → [c]

of the looped complete graph through

mt1,...,tc ≤ m′
t1,...,tc (χ) =

k ′
t1(χ1)
nt1

+ . . . +
k ′

tc (χc)
ntc

,

where k ′
ti (χi) counts not necessarily injective copies of ti -cliques in χi .

So we have found a discrete optimization problem! How to solve it?

Approach 4? Good source of benchmark problems...



2. Where does Optimization come in?

Lower bounds through Semidefinite Programming
Razborov (2007) introduced Flag Algebras to study the limits of discrete objects. They
allow one to apply a Cauchy-Schwarz-argument by solving a concrete SDP formulation.
Can be seen as an improvement over a trivial computational bound:

Letting dφ(χ) denote the density of φ in χ, double counting gives us

mt1,...,tc (χ) =
∑

φ of order N
dφ(χ) mt1,...,tc (φ)

for t1, . . . , tc ≤ N ≤ v(χ). This implies a trivial lower bound of

mt1,...,tc ≥ min
φ of order N

mt1,...,tc (φ).
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2. Where does Optimization come in?

Lower bounds through Semidefinite Programming
Razborov (2007) introduced Flag Algebras to study the limits of discrete objects. They
allow one to apply a Cauchy-Schwarz-argument by solving a concrete SDP formulation.
Can be seen as an improvement over a trivial computational bound:

Letting Dφ denote a particular, computable matrix of density values, any Q ⪰ 0 satisfies∑
φ

dφ(χ) ⟨Q, Dφ⟩ ≤ O(1/v(χ))

for any coloring χ. This implies the following strengthening:

mt1,...,tc ≥ max
Q⪰0

min
φ of order N

mt1,...,tc (φ) −⟨Q, Dφ⟩ . (2)



2. Where does Optimization come in?

Leveraging Symmetries

Increasing N both improves the bound and makes the SDP more difficult to solve:

N value time memory
6 0.02875 0.2s ±0.0 81.2MB ±24.7

7 0.02918 4.9s ±0.1 126.9MB ±26.3

8 0.02942 1.8h ±0.1 1.8GB ±0.0

9 ??? - -

Table: Complexity of SDP problem formulations for m4,4 using CSDP

How can we use combinatorial information to reduce these SDP formulations?
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2. Where does Optimization come in?

Leveraging Symmetries

Increasing N both improves the bound and makes the SDP more difficult to solve:

baseline ours
N value time memory time memory
6 0.02875 0.2s ±0.0 81.2MB ±24.7 0.2s ±0.0 69.8MB ±25.1

7 0.02918 4.9s ±0.1 126.9MB ±26.3 2.4s ±0.0 100.7MB ±28.0

8 0.02942 1.8h ±0.1 1.8GB ±0.0 0.3h ±0.0 642.3MB ±18.1

9 0.02961 - - weeks less than 1.5TB

Table: Complexity of SDP problem formulations for m4,4 using CSDP

How can we use combinatorial information to reduce these SDP formulations?



2. Where does Optimization come in?

Leveraging Symmetries

Increasing N both improves the bound and makes the SDP more difficult to solve:

baseline ours
N value time memory time memory
4 0.0 0.06s ±0.0 79.39MB ±21.0 0.02s ±0.0 3.61 MB ±0.0

5 0.002938 1.5m ±0.0 1.1 GB ±0.0 1.1s ±0.0 86.9 MB ± 22.8

6 0.003906 – – 1 day less than 128GB

Table: Complexity of SDP problem formulations for m3,3,3,3 using CSDP

How can we use combinatorial information to reduce these SDP formulations?



2. Where does Optimization come in?

Leveraging Symmetries

How can we use combinatorial information to reduce these SDP formulations?

Observation The Dφ have a block-diagonal structure with many symmetries.

max
Q⪰0

min
{

1 -
〈
Q,

( 1 0
0 0

)〉
, -

〈
Q,

( 1/3 1/3
1/3 0

)〉
, -

〈
Q,

( 0 1/3
1/3 1/3

)〉
, 1 -

〈
Q,

( 0 0
0 1

)〉}
,

Figure: The SDP formulation for m3,3

Method 1 Reduce the number of constraints and blocks by combining constraints.

Method 2 Reduce the number of variables by block diagonalization.
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2. Where does Optimization come in?

Leveraging Symmetries

How can we use combinatorial information to reduce these SDP formulations?

Observation The Dφ have a block-diagonal structure with many symmetries.

max
Q⪰0

min
{

1 −
〈
Q,

( 1/2 0
0 1/2

)〉
, −

〈
Q,

( 1/6 1/3
1/3 1/6

)〉}
,

Figure: The SDP formulation for m3,3

Method 1 Reduce the number of constraints and blocks by combining constraints.

Method 2 Reduce the number of variables by block diagonalization.



2. Where does Optimization come in?

Leveraging Symmetries

How can we use combinatorial information to reduce these SDP formulations?

Observation The Dφ have a block-diagonal structure with many symmetries.

max
x ,y≥0

min
{
1 − x

2 − y
2 , − x

2 + y
6

}
.

Figure: The SDP formulation for m3,3

Method 1 Reduce the number of constraints and blocks by combining constraints.

Method 2 Reduce the number of variables by block diagonalization.
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3. Where can we go from here?

Outlook

We have...

...optimized the computation and
formulation of the SDP problems.

Can we...

...improve the solution process
and extend the approach to new domains?



Thank you for your attention!
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