

Leveraging Combinatorial Symmetries in Flag Algebra-based SDP Formulations

Workshop on Recent Advances in Optimization, Fields Institute, CA

Christoph Spiegel (Zuse Institute Berlin)

Results are joint work with...

ZIB / TU Berlin

FU Berlin

ZIB / TU Berlin

FU Berlin

Research partially funded through Math+ projects EF1-12 and EF1-21

Combinatorial Symmetries in Flag Algebras

1. What are we interested in?

2. Where does Optimization come in?

3. Where can we go from here?

The Ramsey Multiplicity Problem

Theorem (Ramsey 1930)

For any $t \in \mathbb{N}$ there exists $R_{t,t} \in \mathbb{N}$ such that any 2-edge-coloring of the complete graph of order at least $R_{t,t}$ contains a monochromatic clique of size t.

A well-known question: Can we determine $R_{t_1,...,t_c}$? A related question:

How many cliques do we need to have?

$$m_{t_1,...,t_c}(n) = \min_{\chi} m_{t_1,...,t_c}(\chi) = \min_{\chi} \frac{k_{t_1}(\chi_1)}{\binom{n}{t_1}} + \ldots \frac{k_{t_c}(\chi_c)}{\binom{n}{t_c}}.$$

The Ramsey Multiplicity Problem

Theorem (Ramsey 1930 – Multicolor Version)

For any $t_1, \ldots, t_c \in \mathbb{N}$ there exists $R_{t_1,\ldots,t_c} \in \mathbb{N}$ s.t. any c-edge-coloring of K_n with $n \geq R_{t_1,\ldots,t_c} \in \mathbb{N}$ contains an clique of size t_i with edges colored i for some $1 \leq i \leq c$.

A well-known question: Can we determine $R_{t_1,...,t_c}$? A related question:

How many cliques do we need to have?

$$m_{t_1,...,t_c}(n) = \min_{\chi} m_{t_1,...,t_c}(\chi) = \min_{\chi} \frac{k_{t_1}(\chi_1)}{\binom{n}{t_1}} + \dots \frac{k_{t_c}(\chi_c)}{\binom{n}{t_c}}.$$

The Ramsey Multiplicity Problem

Theorem (Ramsey 1930 – Multicolor Version)

For any $t_1, \ldots, t_c \in \mathbb{N}$ there exists $R_{t_1,\ldots,t_c} \in \mathbb{N}$ s.t. any c-edge-coloring of K_n with $n \geq R_{t_1,\ldots,t_c} \in \mathbb{N}$ contains an clique of size t_i with edges colored i for some $1 \leq i \leq c$.

A well-known question:

Can we determine $R_{t_1,...,t_c}$?

A related question:

How many cliques do we need to have?

$$m_{t_1,...,t_c}(n) = \min_{\chi} m_{t_1,...,t_c}(\chi) = \min_{\chi} \frac{k_{t_1}(\chi_1)}{\binom{n}{t_1}} + \ldots \frac{k_{t_c}(\chi_c)}{\binom{n}{t_c}}.$$

The Ramsey Multiplicity Problem

Theorem (Ramsey 1930 – Multicolor Version)

For any $t_1, \ldots, t_c \in \mathbb{N}$ there exists $R_{t_1,\ldots,t_c} \in \mathbb{N}$ s.t. any c-edge-coloring of K_n with $n \geq R_{t_1,\ldots,t_c} \in \mathbb{N}$ contains an clique of size t_i with edges colored i for some $1 \leq i \leq c$.

A well-known question:

Can we determine $R_{t_1,...,t_c}$?

A related question:

How many cliques do we need to have?

$$m_{t_1,...,t_c}(n) = \min_{\chi} m_{t_1,...,t_c}(\chi) = \min_{\chi} \frac{k_{t_1}(\chi_1)}{\binom{n}{t_1}} + \ldots \frac{k_{t_c}(\chi_c)}{\binom{n}{t_c}}.$$

The Ramsey Multiplicity Problem

Theorem (Ramsey 1930 – Multicolor Version)

For any $t_1, \ldots, t_c \in \mathbb{N}$ there exists $R_{t_1,\ldots,t_c} \in \mathbb{N}$ s.t. any c-edge-coloring of K_n with $n \ge R_{t_1,\ldots,t_c} \in \mathbb{N}$ contains an clique of size t_i with edges colored i for some $1 \le i \le c$.

A well-known question:

Can we determine $R_{t_1,...,t_c}$?

A related question:

How many cliques do we need to have?

$$m_{t_1,...,t_c}(n) = \min_{\chi} m_{t_1,...,t_c}(\chi) = \min_{\chi} \frac{k_{t_1}(\chi_1)}{\binom{n}{t_1}} + \ldots \frac{k_{t_c}(\chi_c)}{\binom{n}{t_c}}.$$

The two questions are related through the following inequality:

$$m_{t_1,\ldots,t_c} = \lim_{n \to \infty} m_{t_1,\ldots,t_c}(n) \le (R_{t_1,\ldots,t_{c-1}} - 1)^{1-t_c}.$$
 (1)

Proof Write $R = R_{t_1,...,t_{c-1}}$ and let χ be an extremal c - 1-coloring of K_{R-1} .

Consider the sequence of c-colorings χ_m of $K_{m(R-1)}$ obtained by replacing each $v \in [R-1]$ by *m* copies v_1, \ldots, v_m and setting $\chi_m(v_i w_j) = \chi(vw)$. The edges $v_i v_j$ get colored with the additional color *c*.

The two questions are related through the following inequality:

$$m_{t_1,\ldots,t_c} = \lim_{n \to \infty} m_{t_1,\ldots,t_c}(n) \le (R_{t_1,\ldots,t_{c-1}} - 1)^{1-t_c}.$$
 (1)

Proof Write $R = R_{t_1,...,t_{c-1}}$ and let χ be an extremal c - 1-coloring of K_{R-1} .

Consider the sequence of c-colorings χ_m of $K_{m(R-1)}$ obtained by replacing each $v \in [R-1]$ by *m* copies v_1, \ldots, v_m and setting $\chi_m(v_i w_j) = \chi(vw)$. The edges $v_i v_j$ get colored with the additional color *c*.

The two questions are related through the following inequality:

$$m_{t_1,\ldots,t_c} = \lim_{n \to \infty} m_{t_1,\ldots,t_c}(n) \le (R_{t_1,\ldots,t_{c-1}} - 1)^{1-t_c}.$$
 (1)

Proof Write $R = R_{t_1,...,t_{c-1}}$ and let χ be an extremal c - 1-coloring of K_{R-1} .

Consider the sequence of c-colorings χ_m of $K_{m(R-1)}$ obtained by replacing each $v \in [R-1]$ by *m* copies v_1, \ldots, v_m and setting $\chi_m(v_i w_j) = \chi(vw)$. The edges $v_i v_j$ get colored with the additional color *c*.

The two questions are related through the following inequality:

$$m_{t_1,\ldots,t_c} = \lim_{n \to \infty} m_{t_1,\ldots,t_c}(n) \le (R_{t_1,\ldots,t_{c-1}} - 1)^{1-t_c}.$$
 (1)

Proof Write $R = R_{t_1,...,t_{c-1}}$ and let χ be an extremal c - 1-coloring of K_{R-1} .

Consider the sequence of *c*-colorings χ_m of $K_{m(R-1)}$ obtained by replacing each $v \in [R-1]$ by *m* copies v_1, \ldots, v_m and setting $\chi_m(v_i w_j) = \chi(vw)$. The edges $v_i v_j$ get colored with the additional color *c*.

$$m_{t_1,\ldots,t_c} = \lim_{n \to \infty} m_{t_1,\ldots,t_c}(n) \le (R_{t_1,\ldots,t_{c-1}} - 1)^{1-t_c}.$$
 (1)

Proof Sketch Blow up χ while using the additional color *c* for the cliques.

Theorem (Goodman 1959)

Exact characterization of $m_{3,3}(n)$ for all $n \in \mathbb{N}$ implying $m_{3,3} = 1/4 = (R_3 - 1)^{1-3}$.

$$m_{t_1,\ldots,t_c} = \lim_{n \to \infty} m_{t_1,\ldots,t_c}(n) \le (R_{t_1,\ldots,t_{c-1}} - 1)^{1-t_c}.$$
 (1)

Proof Sketch Blow up χ while using the additional color *c* for the cliques.

Theorem (Goodman 1959)

Exact characterization of $m_{3,3}(n)$ for all $n \in \mathbb{N}$ implying $m_{3,3} = 1/4 = (R_3 - 1)^{1-3}$.

$$m_{t_1,\dots,t_c} = \lim_{n \to \infty} m_{t_1,\dots,t_c}(n) \le (R_{t_1,\dots,t_{c-1}} - 1)^{1-t_c}.$$
 (1)

Proof Sketch Blow up χ while using the additional color *c* for the cliques.

Theorem (Goodman 1959)

Exact characterization of $m_{3,3}(n)$ for all $n \in \mathbb{N}$ implying $m_{3,3} = 1/4 = (R_3 - 1)^{1-3}$.

$$m_{t_1,\ldots,t_c} = \lim_{n \to \infty} m_{t_1,\ldots,t_c}(n) \le (R_{t_1,\ldots,t_{c-1}} - 1)^{1-t_c}.$$
 (1)

Proof Sketch Blow up χ while using the additional color *c* for the cliques.

Theorem (Goodman 1959)

Exact characterization of $m_{3,3}(n)$ for all $n \in \mathbb{N}$ implying $m_{3,3} = 1/4 = (R_3 - 1)^{1-3}$.

When c = 2 and $t_1 = t_2 = t$, we have $R_t = t$ and a uniform random coloring beats (1).

Conjecture (Erdős 1962)	
$m_{t,t}(n)=2^{1-{t\choose 2}}$ for any $t\in\mathbb{N}.$	False for $t \ge 4$ (Thomason 1989)

Theorem (Thomason 1989)

ZUSE INSTITUT BERLIN

 $m_{4,4} \leq 0.03050$ and $m_{5,5} \leq 0.001770$.

Theorem (Giraud 1976)

 $m_{4,4} \geq 0.02172$

Theorem (Parczyk, Pokutta, S., Szabó 2022)

When c = 2 and $t_1 = t_2 = t$, we have $R_t = t$ and a uniform random coloring beats (1).

Conjecture (Erdős 1962)	
$m_{t,t}(n)=2^{1-{t\choose 2}}$ for any $t\in\mathbb{N}.$	False for $t \ge 4$ (Thomason 1989)

Theorem (Thomason 1989)

 $m_{4,4} \leq 0.03050$ and $m_{5,5} \leq 0.001770$.

Theorem (Giraud 1976)

 $m_{4,4} \geq 0.02172$

Theorem (Parczyk, Pokutta, S., Szabó 2022)

When c = 2 and $t_1 = t_2 = t$, we have $R_t = t$ and a uniform random coloring beats (1).

Conjecture (Erdős 1962)	
$m_{t,t}(n)=2^{1-{t\choose 2}}$ for any $t\in\mathbb{N}.$	False for $t \ge 4$ (Thomason 1989)

Theorem	(Thomason 1989)	
---------	-----------------	--

ZUSE INSTITUT BERLIN

 $m_{4,4} \leq 0.03050$ and $m_{5,5} \leq 0.001770$.

$$m_{4,4} \geq 0.02172$$

Theorem (Parczyk, Pokutta, S., Szabó 2022)

When c = 2 and $t_1 = t_2 = t$, we have $R_t = t$ and a uniform random coloring beats (1).

Conjecture (Erdős 1962)	
$m_{t,t}(n)=2^{1-{t\choose 2}}$ for any $t\in\mathbb{N}.$	False for $t \ge 4$ (Thomason 1989)

Theorem	(Thomason	1989)
---------	-----------	------	---

ZUSE INSTITUT BERLIN

 $m_{4,4} \leq 0.03050$ and $m_{5,5} \leq 0.001770$.

Theorem (Giraud 1976)

$$m_{4,4} \geq 0.02172$$

Theorem (Parczyk, Pokutta, S., Szabó 2022)

When c = 2 and $t_1 = t_2 = t$, we have $R_t = t$ and a uniform random coloring beats (1).

Conjecture (Erdős 1962)	
$m_{t,t}(n)=2^{1-{t\choose 2}}$ for any $t\in\mathbb{N}.$	False for $t \ge 4$ (Thomason 1989)

Theorem (Thomason 1997)

 $m_{4,4} \leq 0.03032$ and $m_{5,5} \leq 0.001721$.

Theorem (Giraud 1976)

 $m_{4,4} \geq 0.02172$

Theorem (Parczyk, Pokutta, S., Szabó 2022)

ZUSE INSTITUTE BERLIN

Fixing two colors and growing the size of cliques

When c = 2 and $t_1 = t_2 = t$, we have $R_t = t$ and a uniform random coloring beats (1).

Conjecture (Erdős 1962)	
$m_{t,t}(n)=2^{1-{t\choose 2}}$ for any $t\in\mathbb{N}.$	False for $t \ge 4$ (Thomason 1989)

Theorem (Even-Zohar, Linial 2016)	Theorem (Giraud 1976)
$m_{4,4} \leq 0.03029$	$m_{4,4} \ge 0.02172$

Theorem (Parczyk, Pokutta, S., Szabó 2022)

Fixing two colors and growing the size of cliques

When c = 2 and $t_1 = t_2 = t$, we have $R_t = t$ and a uniform random coloring beats (1).

Conjecture (Erdős 1962)	
$m_{t,t}(n)=2^{1-{t\choose 2}}$ for any $t\in\mathbb{N}.$	False for $t \ge 4$ (Thomason 1989)

Theorem (Parczyk, Pokutta, S., Szabó 2022)

 $m_{4,4} \leq 0.03013$ and $m_{5,5} \leq 0.001707$.

Theorem (Giraud 1976)

 $m_{4,4} \geq 0.02172$

Theorem (Parczyk, Pokutta, S., Szabó 2022)

Fixing two colors and growing the size of cliques

When c = 2 and $t_1 = t_2 = t$, we have $R_t = t$ and a uniform random coloring beats (1).

Conjecture (Erdős 1962)	
$m_{t,t}(n)=2^{1-{t\choose 2}}$ for any $t\in\mathbb{N}.$	False for $t \ge 4$ (Thomason 1989)

Theorem	(Parczyk,	Pokutta,	S.,	Szabó 2022)	
---------	-----------	----------	-----	-------------	--

 $m_{4,4} \leq 0.03013$ and $m_{5,5} \leq 0.001707$.

Theorem (Giraud 1976)
$$m_{4,4} > 0.02172$$

Theorem (Parczyk, Pokutta, S., Szabó 2022)

ZUSE INSTITUT BERLIN

Fixing two colors and growing the size of cliques

When c = 2 and $t_1 = t_2 = t$, we have $R_t = t$ and a uniform random coloring beats (1).

Conjecture (Erdős 1962)	
$m_{t,t}(n)=2^{1-{t\choose 2}}$ for any $t\in\mathbb{N}.$	False for $t \ge 4$ (Thomason 1989)

 $m_{4,4} \leq 0.03013$ and $m_{5,5} \leq 0.001707$.

Theorem (Sperfeld / Niess 2011)

 $m_{4,4} \ge 0.02856$

Theorem (Parczyk, Pokutta, S., Szabó 2022)

Fixing two colors and growing the size of cliques

When c = 2 and $t_1 = t_2 = t$, we have $R_t = t$ and a uniform random coloring beats (1).

Conjecture (Erdős 1962)	
$m_{t,t}(n)=2^{1-{t\choose 2}}$ for any $t\in\mathbb{N}.$	False for $t \ge 4$ (Thomason 1989)

Theorem (Parczyk, Pokutta, S., Szabó 2022)

 $m_{4,4} \leq 0.03013$ and $m_{5,5} \leq 0.001707$.

Theorem (Kiem, Pokutta, S. 2022+)

 $m_{4,4} \ge 0.02961$ and $m_{5,5} \ge 0.001557$.

Theorem (Parczyk, Pokutta, S., Szabó 2022)

ZUSE

Fixing two colors and growing the size of cliques

When c = 2 and $t_1 = t_2 = t$, we have $R_t = t$ and a uniform random coloring beats (1).

Conjecture (Erdős 1962)	
$m_{t,t}(n)=2^{1-{t\choose 2}}$ for any $t\in\mathbb{N}.$	False for $t \ge 4$ (Thomason 1989)

Theorem (Parczyk, Pokutta, S., Szabó 2022)

 $m_{4,4} \leq 0.03013$ and $m_{5,5} \leq 0.001707$.

Theorem (Kiem, Pokutta, S. 2022+)

 $m_{4,4} \ge 0.02961$ and $m_{5,5} \ge 0.001557$.

Theorem (Parczyk, Pokutta, S., Szabó 2022)

Fixing triangles and growing the number of colors

Theorem (Goodman 1959)

 $m_{3,3} = 1/4 = 1/(R_3 - 1)^2$ and there are many extremal constructions.

Theorem (Cummings et al. 2013)

 $m_{3,3,3} = 1/25 = 1/(R_{3,3} - 1)^2$ and the only extremal constructions are based on $R_{3,3}$.

Theorem (Kiem, Pokutta, S. 2022+)

 $m_{3,3,3,3} = 1/256 = 1/(R_{3,3,3} - 1)^2.$

Fixing triangles and growing the number of colors

Theorem (Goodman 1959)

 $m_{3,3} = 1/4 = 1/(R_3 - 1)^2$ and there are many extremal constructions.

Theorem (Cummings et al. 2013)

 $m_{3,3,3} = 1/25 = 1/(R_{3,3}-1)^2$ and the only extremal constructions are based on $R_{3,3}$.

Theorem (Kiem, Pokutta, S. 2022+)

 $m_{3,3,3,3} = 1/256 = 1/(R_{3,3,3} - 1)^2.$

Fixing triangles and growing the number of colors

Theorem (Goodman 1959)

 $m_{3,3} = 1/4 = 1/(R_3 - 1)^2$ and there are many extremal constructions.

Theorem (Cummings et al. 2013)

 $m_{3,3,3} = 1/25 = 1/(R_{3,3}-1)^2$ and the only extremal constructions are based on $R_{3,3}$.

Theorem (Kiem, Pokutta, S. 2022+)

 $m_{3,3,3,3} = 1/256 = 1/(R_{3,3,3} - 1)^2$.

Fixing triangles and growing the number of colors

Theorem (Goodman 1959)

 $m_{3,3} = 1/4 = 1/(R_3 - 1)^2$ and there are many extremal constructions.

Theorem (Cummings et al. 2013)

 $m_{3,3,3} = 1/25 = 1/(R_{3,3}-1)^2$ and the only extremal constructions are based on $R_{3,3}$.

Theorem (Kiem, Pokutta, S. 2022+)

 $m_{3,3,3,3} = 1/256 = 1/(R_{3,3,3} - 1)^2$.

Combinatorial Symmetries in Flag Algebras

1. What are we interested in?

2. Where does Optimization come in?

3. Where can we go from here?

Upper bounds through Discrete Optimization

Using blow-ups, we can derive an upper bound for $m_{t_1,...,t_c}$ from any coloring

$$\chi: E(K_n) \cup \{n\} \to [c]$$

of the looped complete graph through

$$m_{t_1,\ldots,t_c} \leq m'_{t_1,\ldots,t_c}(\chi) = \frac{k'_{t_1}(\chi_1)}{n^{t_1}} + \ldots + \frac{k'_{t_c}(\chi_c)}{n^{t_c}},$$

where $k'_{t_i}(\chi_i)$ counts not necessarily injective copies of t_i -cliques in χ_i .

So we have found a discrete optimization problem! How to solve it?

Approach 0. Check some obvious existing constructions.

Upper bounds through Discrete Optimization

Using blow-ups, we can derive an upper bound for $m_{t_1,...,t_c}$ from any coloring

$$\chi: E(K_n) \cup \{n\} \to [c]$$

of the looped complete graph through

$$m_{t_1,\ldots,t_c} \leq m'_{t_1,\ldots,t_c}(\chi) = \frac{k'_{t_1}(\chi_1)}{n^{t_1}} + \ldots + \frac{k'_{t_c}(\chi_c)}{n^{t_c}},$$

where $k'_{t_i}(\chi_i)$ counts not necessarily injective copies of t_i -cliques in χ_i .

So we have found a discrete optimization problem! How to solve it?

Approach 0. Check some obvious existing constructions.

Upper bounds through Discrete Optimization

Using blow-ups, we can derive an upper bound for $m_{t_1,...,t_c}$ from any coloring

$$\chi: E(K_n) \cup \{n\} \to [c]$$

of the looped complete graph through

$$m_{t_1,\ldots,t_c} \leq m'_{t_1,\ldots,t_c}(\chi) = \frac{k'_{t_1}(\chi_1)}{n^{t_1}} + \ldots + \frac{k'_{t_c}(\chi_c)}{n^{t_c}},$$

where $k'_{t_i}(\chi_i)$ counts not necessarily injective copies of t_i -cliques in χ_i .

So we have found a discrete optimization problem! How to solve it?

Approach 1 Check colorings χ exhaustively.

Upper bounds through Discrete Optimization

Using blow-ups, we can derive an upper bound for $m_{t_1,...,t_c}$ from any coloring

$$\chi: E(K_n) \cup \{n\} \to [c]$$

of the looped complete graph through

$$m_{t_1,\ldots,t_c} \leq m'_{t_1,\ldots,t_c}(\chi) = \frac{k'_{t_1}(\chi_1)}{n^{t_1}} + \ldots + \frac{k'_{t_c}(\chi_c)}{n^{t_c}},$$

where $k'_{t_i}(\chi_i)$ counts not necessarily injective copies of t_i -cliques in χ_i .

So we have found a discrete optimization problem! How to solve it?

Approach 1.5 Check colorings χ exhaustively *up to isomorphism*.

Upper bounds through Discrete Optimization

Using blow-ups, we can derive an upper bound for $m_{t_1,...,t_c}$ from any coloring

$$\chi: E(K_n) \cup \{n\} \to [c]$$

of the looped complete graph through

$$m_{t_1,\ldots,t_c} \leq m'_{t_1,\ldots,t_c}(\chi) = \frac{k'_{t_1}(\chi_1)}{n^{t_1}} + \ldots + \frac{k'_{t_c}(\chi_c)}{n^{t_c}},$$

where $k'_{t_i}(\chi_i)$ counts not necessarily injective copies of t_i -cliques in χ_i .

So we have found a discrete optimization problem! How to solve it?

Approach 2 Bounded Tree search taking the parameter into account.

Upper bounds through Discrete Optimization

Using blow-ups, we can derive an upper bound for $m_{t_1,...,t_c}$ from any coloring

$$\chi: E(K_n) \cup \{n\} \to [c]$$

of the looped complete graph through

$$m_{t_1,\ldots,t_c} \leq m'_{t_1,\ldots,t_c}(\chi) = \frac{k'_{t_1}(\chi_1)}{n^{t_1}} + \ldots + \frac{k'_{t_c}(\chi_c)}{n^{t_c}},$$

where $k'_{t_i}(\chi_i)$ counts not necessarily injective copies of t_i -cliques in χ_i .

So we have found a discrete optimization problem! How to solve it?

Approach 3 Search Heuristics \rightarrow upper bounds for $m_{4,4}$, $m_{5,5}$ and $m_{3,4}$

Upper bounds through Discrete Optimization

Using blow-ups, we can derive an upper bound for $m_{t_1,...,t_c}$ from any coloring

$$\chi: E(K_n) \cup \{n\} \to [c]$$

of the looped complete graph through

$$m_{t_1,\ldots,t_c} \leq m'_{t_1,\ldots,t_c}(\chi) = \frac{k'_{t_1}(\chi_1)}{n^{t_1}} + \ldots + \frac{k'_{t_c}(\chi_c)}{n^{t_c}},$$

where $k'_{t_i}(\chi_i)$ counts not necessarily injective copies of t_i -cliques in χ_i .

So we have found a discrete optimization problem! How to solve it?

Approach 4? Good source of benchmark problems...

Lower bounds through Semidefinite Programming

Razborov (2007) introduced *Flag Algebras* to study the limits of discrete objects. They allow one to apply a Cauchy-Schwarz-argument by solving a concrete SDP formulation.

Can be seen as an improvement over a trivial computational bound:

Letting $d_{\varphi}(\chi)$ denote the density of φ in χ , double counting gives us

$$m_{t_1,...,t_c}(\chi) = \sum_{arphi ext{ of order } N} d_{arphi}(\chi) \ m_{t_1,...,t_c}(arphi)$$

for $t_1, \ldots, t_c \leq N \leq v(\chi)$. This implies a trivial lower bound of

$$m_{t_1,\ldots,t_c} \geq \min_{\varphi \text{ of order } N} m_{t_1,\ldots,t_c}(\varphi).$$

Lower bounds through Semidefinite Programming

Razborov (2007) introduced *Flag Algebras* to study the limits of discrete objects. They allow one to apply a Cauchy-Schwarz-argument by solving a concrete SDP formulation.

Can be seen as an improvement over a trivial computational bound:

Letting $d_{\varphi}(\chi)$ denote the density of φ in χ , double counting gives us $m_{t_1,\ldots,t_c}(\chi) = \sum d_{\varphi}(\chi) m_{t_1,\ldots,t_c}(\varphi)$ for $t_1, \ldots, t_c \leq N \leq v(\chi)$. This implies a trivial lower bound of $m_{t_1,\ldots,t_c} \geq \min_{\substack{\varphi \in \text{order } N}} m_{t_1,\ldots,t_c}(\varphi).$

Lower bounds through Semidefinite Programming

Razborov (2007) introduced *Flag Algebras* to study the limits of discrete objects. They allow one to apply a Cauchy-Schwarz-argument by solving a concrete SDP formulation.

Can be seen as an improvement over a trivial computational bound:

Letting $d_{\varphi}(\chi)$ denote the density of φ in χ , double counting gives us

$$m_{t_1,...,t_c}(\chi) = \sum_{arphi ext{ of order } N} d_{arphi}(\chi) \, m_{t_1,...,t_c}(arphi)$$

for $t_1, \ldots, t_c \leq N \leq v(\chi)$. This implies a trivial lower bound of

$$m_{t_1,\ldots,t_c} \geq \min_{\varphi \text{ of order } N} m_{t_1,\ldots,t_c}(\varphi).$$

Lower bounds through Semidefinite Programming

Razborov (2007) introduced *Flag Algebras* to study the limits of discrete objects. They allow one to apply a Cauchy-Schwarz-argument by solving a concrete SDP formulation.

Can be seen as an improvement over a trivial computational bound:

Letting $d_{\varphi}(\chi)$ denote the density of φ in χ , double counting gives us

$$m_{t_1,...,t_c}(\chi) = \sum_{arphi ext{ of order } N} d_arphi(\chi) \, m_{t_1,...,t_c}(arphi)$$

for $t_1, \ldots, t_c \leq N \leq v(\chi)$. This implies a trivial lower bound of

$$m_{t_1,...,t_c} \geq \min_{\varphi ext{ of order } N} m_{t_1,...,t_c}(\varphi).$$

Lower bounds through Semidefinite Programming

Razborov (2007) introduced *Flag Algebras* to study the limits of discrete objects. They allow one to apply a Cauchy-Schwarz-argument by solving a concrete SDP formulation.

Can be seen as an improvement over a trivial computational bound:

Letting D_{arphi} denote a particular, computable matrix of density values, any $Q \succeq 0$ satisfies

$$\sum_{arphi} d_arphi(\chi) \left< Q, D_arphi
ight> \leq O(1/ v(\chi))$$

for any coloring χ . This implies the following strengthening:

$$m_{t_1,\dots,t_c} \ge \max_{\boldsymbol{Q} \succeq \boldsymbol{0}} \min_{\varphi \text{ of order } N} m_{t_1,\dots,t_c}(\varphi) - \langle \boldsymbol{Q}, \boldsymbol{D}_{\varphi} \rangle .$$
(2)

\mathcal{N}	value	time	memory
6	0.02875	$0.2s \pm 0.0$	81.2mb ±24.7
7	0.02918	$4.9s \ \pm 0.1$	126.9мв ±26.3
8	0.02942	$1.8h \pm 0.1$	1.8gb ±0.0
9	???	-	-

Table: Complexity of SDP problem formulations for $m_{4,4}$ using CSDP

N	value	time	memory
6	0.02875	$0.2s \ \pm 0.0$	81.2мв ±24.7
7	0.02918	$4.9s \ {\scriptstyle \pm 0.1}$	$126.9_{\text{MB}\ \pm 26.3}$
8	0.02942	$1.8h {\rm \pm 0.1}$	1.8_{GB} ±0.0
9	???	-	-

Table: Complexity of SDP problem formulations for $m_{4,4}$ using CSDP

Ν	value	time	memory
6	0.02875	$0.2s \ \pm 0.0$	81.2мв ±24.7
7	0.02918	$4.9s \ {\scriptstyle \pm 0.1}$	$126.9_{\text{MB}\ \pm 26.3}$
8	0.02942	$1.8h \pm 0.1$	1.8_{GB} ±0.0
9	???	-	-

Table: Complexity of SDP problem formulations for $m_{4,4}$ using CSDP

		ba	seline	ours	
Ν	value	time	memory	time	memory
6	0.02875	$0.2s \ \pm 0.0$	81.2мв ±24.7	$0.2s \ \pm 0.0$	69.8мв ±25.1
7	0.02918	$4.9s \ {\scriptstyle \pm 0.1}$	126.9мв ±26.3	$2.4s \scriptstyle \pm 0.0$	100.7мв ±28.0
8	0.02942	$1.8h {\rm ~\pm 0.1}$	$1.8_{\text{GB}} \pm 0.0$	$0.3h \pm 0.0$	642.3мв ±18.1
9	0.02961	-	-	weeks	less than 1.5_{TB}

Table: Complexity of SDP problem formulations for $m_{4,4}$ using CSDP

		ba	seline	ours	
Ν	value	time	memory	time	memory
4	0.0	$0.06s \pm 0.0$	$79.39_{\text{MB}\ \pm 21.0}$	$0.02s \ \pm 0.0$	$3.61 \text{ MB } {\scriptstyle \pm 0.0}$
5	0.002938	$1.5m \scriptstyle \pm 0.0$	$1.1 \text{ GB } \pm 0.0$	$1.1s \pm 0.0$	$86.9 \text{ mb} \pm 22.8$
6	0.003906	_	_	1 day	less than 128_{GB}

Table: Complexity of SDP problem formulations for $m_{3,3,3,3}$ using CSDP

How can we use combinatorial information to reduce these SDP formulations?

Observation The D_{φ} have a *block-diagonal structure* with many *symmetries*.

$$\max_{Q \succeq 0} \min \left\{ 1 - \left\langle Q, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\rangle, - \left\langle Q, \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 \end{pmatrix} \right\rangle, - \left\langle Q, \begin{pmatrix} 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} \right\rangle, 1 - \left\langle Q, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle \right\},$$

Figure: The SDP formulation for $m_{3,3}$

$$\max_{Q \succeq 0} \min \left\{ 1 - \left\langle Q, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\rangle, - \left\langle Q, \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 \end{pmatrix} \right\rangle, - \left\langle Q, \begin{pmatrix} 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} \right\rangle, 1 - \left\langle Q, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle \right\},$$

Figure: The SDP formulation for $m_{3,3}$

$$\max_{Q \succeq 0} \min \left\{ 1 - \left\langle Q, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\rangle, - \left\langle Q, \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 \end{pmatrix} \right\rangle, - \left\langle Q, \begin{pmatrix} 0 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} \right\rangle, 1 - \left\langle Q, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle \right\},$$

Figure: The SDP formulation for $m_{3,3}$

$$\max_{Q \succeq 0} \min \Big\{ 1 - \Big\langle Q, \left(\begin{smallmatrix} ^{1/2} & 0 \\ 0 & ^{1/2} \end{smallmatrix}\right) \Big\rangle, - \Big\langle Q, \left(\begin{smallmatrix} ^{1/6} & 1/3 \\ 1/3 & 1/6 \end{smallmatrix}\right) \Big\rangle \Big\},$$

Figure: The SDP formulation for $m_{3,3}$

$$\max_{x,y \ge 0} \min \left\{ 1 - \frac{x}{2} - \frac{y}{2}, -\frac{x}{2} + \frac{y}{6} \right\}.$$

Figure: The SDP formulation for $m_{3,3}$

Combinatorial Symmetries in Flag Algebras

1. What are we interested in?

2. Where does Optimization come in?

3. Where can we go from here?

3. Where can we go from here? **Outlook**

We have...

...optimized the computation and formulation of the SDP problems.

Can we...

...improve the solution process and extend the approach to new domains?

Thank you for your attention!