INSTITU
BERLIN

Computer-Assisted Proofs in Extremal Combinatorics

Workshop on Optimization and Machine Learning Frauenhofer IIS, Waischenfeld

Christoph Spiegel (Zuse Institute Berlin)
13th of March 2023

Results are joint work with (a sunflower of)...

Aldo Kiem
ZIB / TU Berlin

Olaf Parczyk FU Berlin

Sebastian Pokutta ZIB / TU Berlin

Tibor Szabó
FU Berlin

1. What we are interested in: A Problem of Erdós

2 slides
2. Obtaining upper bounds: Graph Blowups and Search Heuristics
3. Obtaining lower bounds: Flag Algebras and SDPs

4 slides

Theorem (Ramsey 1930)

For any $t \in \mathbb{N}$ there exists $R_{t, t} \in \mathbb{N}$ such that any 2-edge-coloring of the complete graph of order at least $R_{t, t}$ contains a monochromatic clique of size t.

A well-known question
Can we determine $R_{t_{1}, \ldots, t_{c}}$?

A related question
How many cliques are required?

Theorem (Goodman 1959 - Asymptotic Version)
Asymptotically at least $1 / 4$ of all triangles are monochromatic in any 2-edge-coloring.

1. What we are interested in: A Problem of Erdős The Ramsey Multiplicity Problem

Theorem (Ramsey 1930 - Multicolor Version)
For any $t_{1}, \ldots, t_{c} \in \mathbb{N}$ there exists $R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ s.t. any c-edge-coloring of K_{n} with $n \geq R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ contains an clique of size t_{i} with edges colored i for some $1 \leq i \leq c$.

A well-known question
Can we determine $R_{t_{1}, \ldots, t_{c}}$?

A related question
How many cliques are required?

Theorem (Goodman 1959 - Asymptotic Version)
Asymptotically at least $1 / 4$ of all triangles are monochromatic in any 2-edge-coloring.

```
Theorem (Ramsey 1930 - Multicolor Version)
```

For any $t_{1}, \ldots, t_{c} \in \mathbb{N}$ there exists $R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ s.t. any c-edge-coloring of K_{n} with $n \geq R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ contains an clique of size t_{i} with edges colored i for some $1 \leq i \leq c$.

A well-known question

Can we determine $R_{t_{1}, \ldots, t_{c}}$?

A related question

How many cliques are required?

Theorem (Goodman 1959 - Asymptotic Version)
Asymptotically at least $1 / 4$ of all triangles are monochromatic in any 2-edge-coloring.

```
Theorem (Ramsey 1930 - Multicolor Version)
```

For any $t_{1}, \ldots, t_{c} \in \mathbb{N}$ there exists $R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ s.t. any c-edge-coloring of K_{n} with $n \geq R_{t_{1}, \ldots, t_{c}} \in \mathbb{N}$ contains an clique of size t_{i} with edges colored i for some $1 \leq i \leq c$.

A well-known question

Can we determine $R_{t_{1}, \ldots, t_{c}}$?

A related question

How many cliques are required?

Theorem (Goodman 1959 - Asymptotic Version)
Asymptotically at least $1 / 4$ of all triangles are monochromatic in any 2-edge-coloring.

Beyond Goodman's Result

Notation. Let $\mathcal{G}_{n}=\left\{G: E\left(K_{n}\right) \rightarrow[c]\right\}$ denote all c-edge-colorings of K_{n}, G_{i} the subgraph of K_{n} given by color i and $k_{t_{i}}\left(G_{i}\right)$ the fraction of t_{i}-cliques in G_{i}.

Problem (Ramsey Multiplicity)

What is the value of $m_{t_{1}, \ldots, t_{c}}=\lim _{n} \min _{G \in \mathcal{G}_{n}} k_{t_{1}}\left(G_{1}\right)+\ldots+k_{t_{c}}\left(G_{c}\right)$?
The success of the binomial random graph for $m_{3,3}$ lead to the following conjecture.
Conjecture (Erdos 1962)
$m_{t, t}=2^{1-\binom{t}{2}}$ for any $t \geq 2 . \quad$ False for $t \geq 4$ (Thomason 1989)
The exact value of even $m_{4,4}$ remains unknown with little progress over the last 30 years! We obtain the best current upper and lower bounds.

Beyond Goodman's Result

Notation. Let $\mathcal{G}_{n}=\left\{G: E\left(K_{n}\right) \rightarrow[c]\right\}$ denote all c-edge-colorings of K_{n}, G_{i} the subgraph of K_{n} given by color i and $k_{t_{i}}\left(G_{i}\right)$ the fraction of t_{i}-cliques in G_{i}.

Problem (Ramsey Multiplicity)

What is the value of $m_{t_{1}, \ldots, t_{c}}=\lim _{n} \min _{G \in \mathcal{G}_{n}} k_{t_{1}}\left(G_{1}\right)+\ldots+k_{t_{c}}\left(G_{c}\right)$?
The success of the binomial random graph for $m_{3,3}$ lead to the following conjecture.
Conjecture (Erdős 1962)
$m_{t, t}=2^{1-\binom{t}{2}}$ for any $t \geq 2$. False for $t \geq 4$ (Thomason 1989)
The exact value of even $m_{4,4}$ remains unknown with little progress over the last 30 years! We obtain the best current upper and lower bounds.

Beyond Goodman's Result

Notation. Let $\mathcal{G}_{n}=\left\{G: E\left(K_{n}\right) \rightarrow[c]\right\}$ denote all c-edge-colorings of K_{n}, G_{i} the subgraph of K_{n} given by color i and $k_{t_{i}}\left(G_{i}\right)$ the fraction of t_{i}-cliques in G_{i}.

Problem (Ramsey Multiplicity)

What is the value of $m_{t_{1}, \ldots, t_{c}}=\lim _{n} \min _{G \in \mathcal{G}_{n}} k_{t_{1}}\left(G_{1}\right)+\ldots+k_{t_{c}}\left(G_{c}\right)$?
The success of the binomial random graph for $m_{3,3}$ lead to the following conjecture.
Conjecture (Erdős 1962)
$m_{t, t}=2^{1-\binom{t}{2}}$ for any $t \geq 2$.
False for $t \geq 4$ (Thomason 1989)
The exact value of even $m_{4,4}$ remains unknown with little progress over the last 30 years! We obtain the best current upper and lower bounds.

Computer-Assisted Proofs in Extremal Combinatorics

1. What we are interested in: A Problem of Erdős

2. Obtaining upper bounds: Graph Blowups and Search Heuristics

2 slides
3. Obtaining lower bounds: Flag Algebras and SDPs

4 slides

How to blow up colorings

Notation. Let \mathcal{G}_{n}° denote all c-colorings of the looped K_{n} and $k_{t_{i}}^{\circ}\left(G_{i}\right)$ the fraction of not nec. injective maps from $K_{t_{i}}$ to G_{i} that are strong graph homomorphisms.

Proposition (Bounds from any coloring)

We have $m_{t_{1}, \ldots, t_{c}} \leq k_{t_{1}}^{\circ}\left(G_{1}\right)+\ldots+k_{t_{c}}^{\circ}\left(G_{c}\right)$ for any $G \in \mathcal{G}^{\circ}=\bigcup_{n} \mathcal{G}_{n}^{\circ}$.
Proof. The m-fold blow-up $G^{\times m} \in \mathcal{G}_{n m}$ of G is obtained by replacing each vertex v in G with m copies v_{1}, \ldots, v_{m} and coloring the edge $v_{i} w_{j}$ with the color of $v w$ in G. By definition $m_{t_{1}, \ldots, t_{c}} \leq \lim _{m \rightarrow \infty} k_{t_{1}}\left(G_{1}^{\times m}\right)+\ldots+k_{t_{c}}\left(G_{c}^{\times m}\right)=k_{t_{1}}^{\circ}\left(G_{1}\right)+\ldots+k_{t_{c}}^{\circ}\left(G_{c}\right) . \square$

Corollary (Relating Ramsey numbers and Ramsey multiplicity)

How to blow up colorings

Notation. Let \mathcal{G}_{n}° denote all c-colorings of the looped K_{n} and $k_{t_{i}}^{\circ}\left(G_{i}\right)$ the fraction of not nec. injective maps from $K_{t_{i}}$ to G_{i} that are strong graph homomorphisms.

Proposition (Bounds from any coloring)

We have $m_{t_{1}, \ldots, t_{c}} \leq k_{t_{1}}^{\circ}\left(G_{1}\right)+\ldots+k_{t_{c}}^{\circ}\left(G_{c}\right)$ for any $G \in \mathcal{G}^{\circ}=\bigcup_{n} \mathcal{G}_{n}^{\circ}$.
Proof. The m-fold blow-up $G^{\times m} \in \mathcal{G}_{n m}$ of G is obtained by replacing each vertex v in G with m copies v_{1}, \ldots, v_{m} and coloring the edge $v_{i} w_{j}$ with the color of $v w$ in G. By definition $m_{t_{1}, \ldots, t_{c}} \leq \lim _{m \rightarrow \infty} k_{t_{1}}\left(G_{1}^{\times m}\right)+\ldots+k_{t_{c}}\left(G_{c}^{\times m}\right)=k_{t_{1}}^{\circ}\left(G_{1}\right)+\ldots+k_{t_{c}}^{\circ}\left(G_{c}\right)$.

Corollary (Relating Ramsey numbers and Ramsey multiplicity)

How to blow up colorings

Notation. Let \mathcal{G}_{n}° denote all c-colorings of the looped K_{n} and $k_{t_{i}}^{\circ}\left(G_{i}\right)$ the fraction of not nec. injective maps from $K_{t_{i}}$ to G_{i} that are strong graph homomorphisms.

Proposition (Bounds from any coloring)

We have $m_{t_{1}, \ldots, t_{c}} \leq k_{t_{1}}^{\circ}\left(G_{1}\right)+\ldots+k_{t_{c}}^{\circ}\left(G_{c}\right)$ for any $G \in \mathcal{G}^{\circ}=\bigcup_{n} \mathcal{G}_{n}^{\circ}$.
Proof. The m-fold blow-up $G^{\times m} \in \mathcal{G}_{n m}$ of G is obtained by replacing each vertex v in G with m copies v_{1}, \ldots, v_{m} and coloring the edge $v_{i} w_{j}$ with the color of $v w$ in G. By definition $m_{t_{1}, \ldots, t_{c}} \leq \lim _{m \rightarrow \infty} k_{t_{1}}\left(G_{1}^{\times m}\right)+\ldots+k_{t_{c}}\left(G_{c}^{\times m}\right)=k_{t_{1}}^{\circ}\left(G_{1}\right)+\ldots+k_{t_{c}}^{\circ}\left(G_{c}\right)$.

Corollary (Relating Ramsey numbers and Ramsey multiplicity)
By blowing up Ramsey graphs, we get $m_{t_{1}, \ldots, t_{c}} \leq\left(R_{t_{1}, \ldots, t_{c-1}}-1\right)^{1-t_{c}}$.

How to blow up colorings

Notation. Let \mathcal{G}_{n}° denote all c-colorings of the looped K_{n} and $k_{t_{i}}^{\circ}\left(G_{i}\right)$ the fraction of not nec. injective maps from $K_{t_{i}}$ to G_{i} that are strong graph homomorphisms.

Proposition (Bounds from any coloring)

We have $m_{t_{1}, \ldots, t_{c}} \leq k_{t_{1}}^{\circ}\left(G_{1}\right)+\ldots+k_{t_{c}}^{\circ}\left(G_{c}\right)$ for any $G \in \mathcal{G}^{\circ}=\bigcup_{n} \mathcal{G}_{n}^{\circ}$.
Proof. The m-fold blow-up $G^{\times m} \in \mathcal{G}_{n m}$ of G is obtained by replacing each vertex v in G with m copies v_{1}, \ldots, v_{m} and coloring the edge $v_{i} w_{j}$ with the color of $v w$ in G. By definition $m_{t_{1}, \ldots, t_{c}} \leq \lim _{m \rightarrow \infty} k_{t_{1}}\left(G_{1}^{\times m}\right)+\ldots+k_{t_{c}}\left(G_{c}^{\times m}\right)=k_{t_{1}}^{\circ}\left(G_{1}\right)+\ldots+k_{t_{c}}^{\circ}\left(G_{c}\right)$.

Question: How can we find better candidates for G ?

Theorem (Thomason 1989)
$m_{4,4} \leq 0.3050$ and $m_{5,5} \leq 0.001770$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)
$m_{1,4} \leq 0.03012$ and $m_{5,5} \leq 0.001707$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

$m_{3,4}=689 \cdot 3^{-8}$ with stability results.

Explicit by-hand construction with local search improvements.

Search heuristics over Cayley graphs with specific groups.

Search heuristics over graphs of order 27 found Schläfli graph.

Stability proves that the search heuristic found a unique global optimum.

Theorem (Franek and Rödl 1993)
$m_{4,4} \leq 0.03052$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)
$m_{1,4} \leq 0.03012$ and $m_{5,5} \leq 0.001707$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)
$m_{3,4}=689 \cdot 3^{-8}$ with stability results.

Exhaustive search over specific powerset constructions.

Search heuristics over Cayley graphs with specific groups.

Search heuristics over graphs of order 27 found Schläfli graph.

Stability proves that the search heuristic found a unique global optimum.

Theorem (Thomason 1997)
$m_{4,4} \leq 0.03031$ and $m_{5,5} \leq 0.001720$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022 +)
$m_{1,4} \leq 0.03012$ and $m_{5,5} \leq 0.001707$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

$m_{3,4}=689 \cdot 3^{-8}$ with stability results.

Exhaustive search over XOR graph products.

Search heuristics over Cayley graphs with specific groups.

Search heuristics over graphs of order 27 found Schläfli graph.

Stability proves that the search heuristic found a unique global optimum.

Theorem (Even-Zohar and Linial '15)
$m_{4,4} \leq 0.03028$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)
$m_{1,4} \leq 0.03012$ and $m_{5,5} \leq 0.001707$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)
$m_{3,4}=689 \cdot 3^{-8}$ with stability results.

Modifying the construction of Thomason (1997).

Search heuristics over Cayley graphs with specific groups.

Search heuristics over graphs of order 27 found Schläfli graph.

Stability proves that the search heuristic found a unique global optimum.

Theorem (Even-Zohar and Linial '15)
$m_{4,4} \leq 0.03028$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)
$m_{4,4} \leq 0.03012$ and $m_{5,5} \leq 0.001707$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)

$m_{3,4}=689 \cdot 3^{-8}$ with stability results.

Modifying the construction of Thomason (1997).

Search heuristics over Cayley graphs with specific groups.

Search heuristics over graphs of order 27 found Schläfli graph.

Stability proves that the search heuristic found a unique global optimum.

Theorem (Even-Zohar and Linial '15)
$m_{4,4} \leq 0.03028$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)
$m_{4,4} \leq 0.03012$ and $m_{5,5} \leq 0.001707$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)
$m_{3,4}=689 \cdot 3^{-8}$ with stability results.

Modifying the construction of Thomason (1997).

Search heuristics over Cayley graphs with specific groups.

Search heuristics over graphs of order 27 found Schläfli graph.

Stability proves that the search heuristic found a unique global optimum.

Theorem (Even-Zohar and Linial '15)
$m_{4,4} \leq 0.03028$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)
$m_{4,4} \leq 0.03012$ and $m_{5,5} \leq 0.001707$.

Theorem (Parczyk, Pokutta, S., and Szabó 2022+)
$m_{3,4}=689 \cdot 3^{-8}$ with stability results.

Modifying the construction of Thomason (1997).

Search heuristics over Cayley graphs with specific groups.

Search heuristics over graphs of order 27 found Schläfli graph.

Open Problem: Do we always have $m_{t_{1}, \ldots, t_{c}}=\min _{G \in \mathcal{G}^{\circ}} k_{t_{1}}^{\circ}\left(G_{1}\right)+\ldots+k_{t_{c}}^{\circ}\left(G_{c}\right)$?

1. What we are interested in: A Problem of Erdős

2. Obtaining upper bounds: Graph Blowups and Search Heuristics
3. Obtaining lower bounds: Flag Algebras and SDPs 4 slides

Razborov (2007) introduced Flag Algebras to study the limits of discrete objects.

Definition (Flag Algebras for the empty type)

The flag algebra (of the empty type) \mathcal{A} is given by considering $\mathbb{R} \mathcal{G}$, factoring out the relations \mathcal{K} given by the chain rule and defining an appropriate product.

We can phrase our problem through conic optimization as

where \mathcal{S} is the semantic cone and $\operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})=\left\{\varphi \in \operatorname{Hom}(\mathcal{A}, \mathbb{R}):\left.\varphi\right|_{\mathcal{G}} \equiv 0\right\}$
Optimizing over the semantic cone is hard.
However, we can approximate it through SOS hierarchy.

Flag Algebras and their Semantic Cones

Razborov (2007) introduced Flag Algebras to study the limits of discrete objects.

Definition (Flag Algebras for the empty type)

The flag algebra (of the empty type) \mathcal{A} is given by considering $\mathbb{R} \mathcal{G}$, factoring out the relations \mathcal{K} given by the chain rule and defining an appropriate product.

We can phrase our problem through conic optimization as

where \mathcal{S} is the semantic cone and $\operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})=\left\{\varphi \in \operatorname{Hom}(\mathcal{A}, \mathbb{R}):\left.\varphi\right|_{\mathcal{G}} \equiv 0\right\}$
Optimizing over the semantic cone is hard.
However, we can approximate it through SOS hierarchy.

Flag Algebras and their Semantic Cones

Razborov (2007) introduced Flag Algebras to study the limits of discrete objects.
Definition (Flag Algebras for the empty type)
The flag algebra (of the empty type) \mathcal{A} is given by considering $\mathbb{R} \mathcal{G}$, factoring out the relations \mathcal{K} given by the chain rule and defining an appropriate product.

We can phrase our problem through conic optimization as

$$
\max \left\{\lambda \in \mathbb{R}: \underset{\alpha-\circ}{\circ} \bigwedge_{0}-\lambda \varnothing \in \mathcal{S}=\left\{f \in \mathcal{A}: \varphi(f) \geq 0 \text { for all } \varphi \in \operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})\right\}\right\}
$$

where \mathcal{S} is the semantic cone and $\operatorname{Hom}^{+}(\mathcal{A}, \mathbb{R})=\left\{\varphi \in \operatorname{Hom}(\mathcal{A}, \mathbb{R}):\left.\varphi\right|_{\mathcal{G}} \equiv 0\right\}$.
Optimizing over the semantic cone is hard.
However, we can approximate it through SOS hierarchy.

Leveraging Symmetries

The result of Goodman can be derived from the following SDP:

$$
\max _{Q \succeq 0} \min \left\{1-\left\langle Q,\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{cc}
1 / 3 & 1 / 3 \\
1 / 3 & 0
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{cc}
0 & 1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right)\right\rangle, 1-\left\langle Q,\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\rangle\right\}=1 / 4 .
$$

This was obtained through computations on graphs of order $N=3$. Increasing N generally both improves the bound and makes the SDP harder to solve:

N	value	time	memory
6	0.02875	$0.2 \mathrm{~s} \pm 0.0$	$81.2 \mathrm{MB} \pm 24.7$
7	0.02918	$4.9 \mathrm{~s} \pm 0.1$	$126.9_{\mathrm{MB}} \pm 26.3$
8	0.02942	$1.8 \mathrm{~h} \pm 0.1$	$1.8 \mathrm{~GB} \pm 0.0$

Table: Complexity of SDP problem formulations for $m_{4,4}$ using CSDP

Leveraging Symmetries

The result of Goodman can be derived from the following SDP:

$$
\max _{Q \succeq 0} \min \left\{1-\left\langle Q,\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{c}
1 / 3 \\
1 / 3 / 3 \\
1 / 3
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{cc}
0 & 1 / 3 \\
1 / 3
\end{array}\right)\right\rangle, 1-\left\langle Q,\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\rangle\right\}=1 / 4 .
$$

This was obtained through computations on graphs of order $N=3$. Increasing N generally both improves the bound and makes the SDP harder to solve:

N	value	time	memory
6	0.02875	$0.2 \mathrm{~s}_{ \pm 0.0}$	$81.2 \mathrm{MB} \pm 24.7$
7	0.02918	$4.9 \mathrm{~s}_{ \pm 0.1}$	$126.9_{\mathrm{MB} \pm 26.3}$
8	0.02942	$1.8 \mathrm{~h}_{ \pm 0.1}$	$1.8 \mathrm{~GB} \pm 0.0$

Table: Complexity of SDP problem formulations for $m_{4,4}$ using CSDP

How can we use combinatorial information to reduce these SDP formulations?

Bounds through Semidefinite Programming

Method 1 Reduce the number of constraints and blocks by combining constraints.

$$
\max _{Q \succeq 0} \min \left\{1-\left\langle Q,\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{l}
1 / 6 \\
1 / 3 / 3 \\
1 / 3
\end{array}\right)\right\rangle\right\},
$$

Uses that the Ramsey multiplicity is invariant under color permutation. Purely combinatorial proof. Strictly stronger than considering partitions (Balogh et al. 2017). Method 2 Reduce the number of variables by block diagonalization.

Particularly strong when combined with Method 1. Essentially an application of Schur's Lemma. Symmetries are easily determined combinatorially.
Generalizes the antiinvariant split of Razborov (2010). Similar to diagonalization in SOS literature (Gatermann and Parrilo 2004). See also Bachoc et al. (2012).

Bounds through Semidefinite Programming

Method 1 Reduce the number of constraints and blocks by combining constraints.

$$
\max _{Q \succeq 0} \min \left\{1-\left\langle Q,\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)\right\rangle,-\left\langle Q,\left(\begin{array}{c}
1 / 6 \\
1 / 3 / 3 \\
1 / 3 \\
1 / 6
\end{array}\right)\right\rangle\right\},
$$

Uses that the Ramsey multiplicity is invariant under color permutation. Purely combinatorial proof. Strictly stronger than considering partitions (Balogh et al. 2017).
Method 2 Reduce the number of variables by block diagonalization.

$$
\max _{x, y \geq 0} \min \left\{1-\frac{x}{2}-\frac{y}{2},-\frac{x}{2}+\frac{y}{6}\right\} .
$$

Particularly strong when combined with Method 1. Essentially an application of Schur's Lemma. Symmetries are easily determined combinatorially.
Generalizes the antiinvariant split of Razborov (2010). Similar to diagonalization in SOS literature (Gatermann and Parrilo 2004). See also Bachoc et al. (2012).

```
Theorem (Kiem, Pokutta, S. 2022+)
```

$m_{4,4} \geq 0.02961$ and $m_{5,5} \geq 0.001557$ from $N=9$.

Theorem (Cummings et al. 2013)
$m_{3,3,3}=1 / 25=1 /\left(R_{3,3}-1\right)^{2}$ and the only extremal constructions are based on $R_{3,3}$.

Theorem (Kiem, Pokutta, S. 2022+)
$m_{3,3,3,3}=1 / 256=1 /\left(R_{3,3,3}-1\right)^{2}$ from $N=6$.

Open Problem: $m_{3, \ldots, 3}=\left(R_{3}, \ldots, 3-1\right)^{-2}$ for all c ?

Leveraging Symmetries

Theorem (Kiem, Pokutta, S. 2022+)
$m_{4,4} \geq 0.02961$ and $m_{5,5} \geq 0.001557$ from $N=9$.

Theorem (Cummings et al. 2013)
$m_{3,3,3}=1 / 25=1 /\left(R_{3,3}-1\right)^{2}$ and the only extremal constructions are based on $R_{3,3}$.

Theorem (Kiem, Pokutta, S. 2022+)
$m_{3,3,3,3}=1 / 256=1 /\left(R_{3,3,3}-1\right)^{2}$ from $N=6$.

Open Problem: $m_{3, \ldots, 3}=\left(R_{3, \ldots, 3}-1\right)^{-2}$ for all c ?

Leveraging Symmetries

Theorem (Kiem, Pokutta, S. 2022+)
$m_{4,4} \geq 0.02961$ and $m_{5,5} \geq 0.001557$ from $N=9$.

Theorem (Cummings et al. 2013)
$m_{3,3,3}=1 / 25=1 /\left(R_{3,3}-1\right)^{2}$ and the only extremal constructions are based on $R_{3,3}$.

Theorem (Kiem, Pokutta, S. 2022+)
$m_{3,3,3,3}=1 / 256=1 /\left(R_{3,3,3}-1\right)^{2}$ from $N=6$.

Open Problem: $m_{3, \ldots, 3}=\left(R_{3, \ldots, 3}-1\right)^{-2}$ for all c ?

Leveraging Symmetries

Theorem (Kiem, Pokutta, S. 2022+)
$m_{4,4} \geq 0.02961$ and $m_{5,5} \geq 0.001557$ from $N=9$.

Theorem (Cummings et al. 2013)
$m_{3,3,3}=1 / 25=1 /\left(R_{3,3}-1\right)^{2}$ and the only extremal constructions are based on $R_{3,3}$.

Theorem (Kiem, Pokutta, S. 2022+)
$m_{3,3,3,3} \geq 1 / 256-\varepsilon$ for some small ε from $N=6$.

Open Problem: $m_{3, \ldots, 3}=\left(R_{3, \ldots, 3}-1\right)^{-2}$ for all c ?

Thank you for your attention!

4. Appendix

Selected related literature

- Thomason, A. "Graph products and monochromatic multiplicities." Combinatorica 17.1 (1997): 125-134.
- Razborov, A. "Flag algebras." The Journal of Symbolic Logic 72.4 (2007): 1239-1282.
- Razborov, A. "On 3-hypergraphs with forbidden 4-vertex configurations." SIAM Journal on Discrete Mathematics 24.3 (2010): 946-963.
- Cummings, J., et al. "Monochromatic triangles in three-coloured graphs." Journal of Combinatorial Theory, Series B 103.4 (2013): 489-503.
- Balogh, J., et al. "Rainbow triangles in three-colored graphs." Journal of Combinatorial Theory, Series B 126 (2017): 83-113.
- Gatermann, J., and Parrilo, P.. "Symmetry groups, semidefinite programs, and sums of squares." Journal of Pure and Applied Algebra 192.1-3 (2004): 95-128.
- Bachoc, C., et al. "Invariant semidefinite programs." Handbook on semidefinite, conic and polynomial optimization. Springer, Boston, MA, 2012. 219-269.

Proof of Goodman's Result

An upper bound follows by considering the sequence of, e.g., (1) evenly-split complete bipartite graphs $K_{n / 2, n / 2}$ or (2) binomial random graphs $G(n, 1 / 2)$. We saw: How to generalized the bipartite construction computationally.

A matching lower bound can symbolically be derived through

We saw: How to formalize and simplify this through Flag Algebras.

Proof of Goodman's Result

An upper bound follows by considering the sequence of, e.g., (1) evenly-split complete bipartite graphs $K_{n / 2, n / 2}$ or (2) binomial random graphs $G(n, 1 / 2)$. We saw: How to generalized the bipartite construction computationally.

A matching lower bound can symbolically be derived through

$$
\begin{aligned}
& \geq \frac{3}{2}\left(\begin{array}{l}
0^{2} \\
1 \\
0
\end{array}+\left(1-\begin{array}{r}
0 \\
0
\end{array}\right)^{2}-\frac{1}{3}\right)=3\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}-\frac{1}{2}\right)^{2}+\frac{1}{4} \geq \frac{1}{4} \text {. }
\end{aligned}
$$

We saw: How to formalize and simplify this through Flag Algebras.

